
 

Oxygen and Cation Diffusion Processes in Oxygen Ion Conductors  

Manfred Martin 
Institute of Physical Chemistry, RWTH Aachen University                                       

Landoltweg 2, 52056 Aachen, Germany,                                                                             
E-Mail: martin@rwth-aachen.de 

 
Dedicated to Professor Hermann Schmalzried on the occasion of his 75th birthday. 

Abstract 
We discuss oxygen and cation diffusion processes in oxygen ion conductors. While 

the high oxygen diffusivity determines the proper oxygen ion conductivity, slow cation 
diffusion processes are important for sintering and degradation processes. In the first part 
of the paper we discuss an analytical model for the ionic conductivity of a strongly accep-
tor doped, fluorite-type oxygen ion conductor, i.e. a concentrated solution of AO2 and 
BB2O3. The model can be applied, e.g., to yttria doped zirconia (YSZ) and gives a qualita-
tive explanation of the observed maximum of the conductivity as a function of the dopant 
fraction. The model considers nearest neighbor interactions between oxygen vacancies 
and dopant cations, which may be negligible, attractive or repulsive, and jump barriers 
that depend on the nature of the cation-cation edge that has to be crossed during a jump 
between adjacent oxygen sites. In the second part we discuss cation diffusion processes in 
doped lanthanum gallates (LSGM). The experimental results of nearly identical cation 
diffusion coefficients in the A- and B-sublattices of the perovskite LSGM can be ex-
plained by a bound defect cluster mechanism containing cation vacancies of both the A- 
and the B- sublattice and anion vacancies. 
 
Keywords: diffusion, defects, oxygen diffusion, oxygen ion conductivity, cation diffu-
sion, cluster mechanism 

1. Introduction 
Diffusion processes in crystalline oxides are largely determined by point defects and 

their mobilities. For the understanding of the defect structure of oxides we must consider 
the following points:   
- Most oxides are ionic compounds, i.e. they consist of cations and anions with well 

defined, opposite charges. 
- Crystalline oxides consist of at least two sublattices, a metal and an oxygen sublattice, 

or a cation and an anion sublattice. Due to the opposite charges of cations and anions 
diffusion proceeds always in the corresponding sublattice.  

- The concentrations of point defects, vacancies as well as interstitials, which are neces-
sary for diffusion depend not only on the intensive thermodynamic variables pressure, 
p, and temperature, T, but also on the partial pressure pO2 of the component oxygen. 
The latter can be established easily by means of gas mixtures and can be varied over 
many orders of magnitude.  
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- Oxides cover a wide range of materials, such as insulators, pure ionic conductors, 
semiconductors, mixed electronic and ionic conductors and also metallic oxides.  

- The crystal structure of the oxide influences the defect structure. In structures with 
cubic close packing of the oxygen ions, such as the NaCl- or the spinel-structure, de-
fects in the oxygen sublattice have much higher formation enthalpies and therefore 
much lower concentrations than defects in the cation sublattice(s). Consequently, oxy-
gen diffusion is much slower than cation diffusion. In oxides with more open oxygen 
sublattices, such as the perovskite structure or the fluorite structure, oxygen defects are 
formed more easily than cation defects. Therefore, these oxides show very often high 
oxygen diffusivities and are good oxygen ion conductors. 

 
These introductory remarks show that diffusion in oxides depends largely on the de-

fect structure of the oxide. The important dependence of the defect structure on the ther-
modynamic variables p, T and pO2 (so-called defect chemistry) and a comprehensive 
treatment of diffusion processes can be found, e.g.,  in the books of Schmalzried [1] and 
Allnatt and Lidiard [2].  

 
In this article we will focus on diffusion processes in oxides with dominating oxygen 

disorder. A detailed treatment of oxides with dominating cation disorder can be found in 
[3]. Important examples for dominating oxygen disorder are oxides crystallizing in the 
fluorite or the perovskite structure. To increase the fraction of oxygen vacancies, the 
oxide, e.g. AO2, is doped with oxides of lower valent metals. Then, charge neutrality 
requires , i.e. the negative excess charge of the acceptor dopant, A , is 
compensated by oxygen vacancies, , and the doped oxide may become a good oxy-
gen ion conductor. Two well know examples are: 

]2[V]B[ OA
••=′ B′

••
OV

 
- Yttria-stabilized zirconia, (Zr1-xYx)O2-x/2 (YSZ). Here, doping with Y2O3 increases the 

fraction of oxygen vacancies, , and stabilizes the cubic fluorite structure. 
YSZ is a pure oxygen ion conductor over many orders of magnitude in pO

][V2]Y[ OZr
••=′

2 and is used 
as such in oxygen sensors and solid oxygen fuel cells (SOFC) (see e.g. [4] and refer-
ences therein).  
 

- Sr- and Mg-doped lanthanum gallate, (La1-xSrx)(Ga1-yMgy)O3-(x+y)/2 (LSGM), which 
belongs to the class of perovskites ABO3. In LSGM oxygen vacancies are produced by 
co-doping in both cation sublattices, , resulting also in a good 
oxygen ion conductor (see e.g. [

][V2]g[M]r[S OGaLa
••=′+′

4] and references therein). 
 
 Subsequently, we will first discuss the oxygen ion conductivity in YSZ, i.e. we will 
consider the highly concentrated, mobile majority defects (oxygen vacancies). In the 
second part we will discuss cation diffusion in LSGM, i.e. here we will consider the 
highly diluted, mobile minority defects (cation vacancies). 
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2. Oxygen ion conductivity in fluorite-type oxygen ion conductors 
Acceptor-doped, stabilized zirconia, e.g. yttria-doped zirconia (YSZ), exhibits high 

oxygen ion conductivity and has therefore many applications, e.g. in fuel cells, oxygen 
sensors, etc. (for an overview see [5]). YSZ and zirconia doped with other dopants, B, 
have been studied extensively for many years by measuring the oxygen ion conductivities 
and the tracer diffusion coefficients of oxygen as a function of the dopant concentration 
and the temperature (see [5,6,7] and references therein). While it is well accepted that the 
majority point defects are oxygen vacancies and acceptor dopants, there is still discussion 
on the origin of the maximum in the ionic conductivity as a function of the dopant frac-
tion which is observed at dopant levels xB≈0.15 (xB BB is the B-fraction in the cation sublat-
tice) [8,9]. One of the first attempts to explain these findings goes back to Schmalzried 
[10] who showed that ordering of the vacancies and correlation effects cause a decrease 
of the conductivity with increasing dopant fraction. In other investigations the maximum 
was attributed to the interaction between dopants and oxygen vacancies, which is ex-
pected to be attractive, due to the opposite charges of both defects. Thus, in a simple 
picture, oxygen vacancies are trapped by the immobile dopant ions and do not contribute 
in the same way to the conductivity as free vacancies. However, atomistic simulations 
have shown that lattice relaxation near the dopant plays an important role and that the 
interaction energy between dopant cations and vacancies depends on the ionic radius of 
the dopant and the position of the vacancy [11,12]. Dopants with smaller ionic radii than 
Zr (undersized dopants) prefer nearest neighbor positions, while dopants with larger ionic 
radii (oversized dopants, e.g. Y) prefer next-nearest neighbor positions. However, these 
calculations were performed for infinitely diluted dopants, and it is doubtful that the re-
sults can be applied to solid solutions where the dopant fraction is as high as xB ≈ 0.15. 
Another origin of the maximum in the ionic conductivity was suggested by Shimojo et al. 
[13,14] using molecular dynamics (MD). In the fluorite structure, oxygen ions occupy 
tetrahedra formed by the cations. During a jump between two adjacent tetrahedra, the 
oxygen ion has to cross the common edge of the two tetrahedra. According to the MD-
studies, the jump rate through an Y-Y edge is drastically reduced compared to the jump 
rate through a Zr-Zr edge (probably caused by size effects). With increasing dopant frac-
tion the number of Y-Y edges increases and, thus, the oxygen ion conductivity decreases. 
Monte Carlo studies have been performed by Meyer and Nicoloso [15] considering three 
models. In the first model they assumed only attractive interactions between dopant ions 
and vacancies, in the second model only repulsive interactions, and the third model was a 
barrier model as suggested by Shimojo [13,14]. Only the barrier model was able to repro-
duce the experimentally obtained maximum in the conductivity. Murray at al. [16] have 
performed detailed Monte Carlo studies after having calculated the jump activation ener-
gies with atomistic simulation methods and could explain the maximum qualitatively. 
Recently, Krishnamurthy et al. [17] used density functional theory methods to calculate 
the migration energies for vacancy jumps through different edges and confirmed that the 
activation energies for jumps through Zr-Y and Y-Y edges, 1.29 eV and 1.86 eV, are 
much higher than the value for a jump across a Zr-Zr edge, 0.58 eV. However, in the 
subsequent Monte Carlo analysis the authors calculated the oxygen ion conductivity 
assuming only a random vacancy distribution. 
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Here we discuss a simple analytical model for the oxygen ion conductivity of fluorite-
type oxygen ion conductors [18,19] which can be used for a concentrated solution of 
host cations A and dopant cations B, and explains the important experimental findings for 
YSZ: 

- maximum of conductivity at dopant fractions xB ≈ 0.15 [8,9] 
- slight decrease of the activation energy with increasing temperature [20] 
- increase of the activation energy with increasing dopant fraction [21].     
  
In section 2.1 the distribution function for different cation tetrahedra in the fluorite 

structure is discussed considering for simplicity a statistical distribution of host cations A 
and dopant cations B. Then, the distribution of oxygen vacancies to the different oxygen 
sites is analyzed using quasi-chemical reactions and considering dopant-vacancy interac-
tion. We restrict the interactions to nearest neighbor interactions, i.e. vacancies interact 
only with nearest neighbor B-cations (maximum 4). In section 2.2 a model for the ionic 
conductivity, σ, is introduced, and the dependence of σ on the dopant fraction is calcu-
lated using the results for the oxygen vacancy distribution of section 2.1. 

2.1 Vacancy distribution 
In the fluorite structure the N cations form a fcc lattice where each cation has 6 near-

est neighbor cations. The oxygen ions occupy the 2N tetrahedral interstices thereby form-
ing a cubic lattice where each anion has 6 nearest neighbor anion sites. A fraction xA of 
the N cation sites is occupied by host cations, , while a fraction x)A(A x

A≡ B = 1 - xA is 
occupied by trivalent dopant ions, )B(B A′≡ . Their negative excess charge is compen-
sated by oxygen vacancies, , with x)V(V O

••≡ B=2xB V, corresponding to 2/21 BBB
. 

Cation vacancies are only minority defects and are neglected. In our model, we want to 
treat a “concentrated” solution of host cations, A, and dopant cations, B. For simplicity, 
we consider a statistical cation distribution (cation clustering was treated in [ ]). Then, 
the fractions f

O)B(A xxx −−

18
n(xBB

n

) of tetrahedra consisting of n B-cations (n = 0,1,2,3,4) are given by 
(see also [15])  

 

 n 4
n B B B

4
f ( ) 2 (1 )

n
x x x −⎛ ⎞

= −⎜ ⎟
⎝ ⎠

                             (1) 

 
The sum of all fractions is equal to 2, which is the number of tetrahedra per cation. The 
individual fractions are shown in Fig. 1. Subsequently we will use the following notation 
for the fractions of tetrahedra, [ijkl] with (i,j,k,l = A,B), where [AAAA] = f0, [AAAB] = 
f1 etc.  
 Knowing the cation distribution (or the tetrahedra distribution), we have to distribute 
the oxygen vacancies on the oxygen sublattice. Oxygen ions, , and oxygen 
vacancies, V, occupy the 2N tetrahedra formed by the N cations. Since we have assumed 
only nearest neighbor interactions between oxygen vacancies, V, and dopant cations, B, 
oxygen ions and oxygen vacancies can exist with five different tetrahedral cation sur-
roundings, AAAA, AAAB, AABB, ABBB and BBBB. 

)O(O x
O≡

4



 

  

 
Fig. 1 Fractions of tetrahedra AAAA, AAAB, AABB, ABBB, and BBBB according to 

Eq.(1). 
 
The equilibrium between oxygen vacancies in the five different tetrahedra is de-

scribed by four quasi-chemical reactions 

AAABAAAAAAABAAAA VOOV +⎯→←+      
][O][V
][V][O

AAABAAAA

AAABAAAA
1 ⋅

⋅
=K  1

1 exp
E

K
kT

Δ⎛= −⎜
⎝ ⎠

⎞
⎟           (2) 

AABBAAAAAABBAAAA VOOV +⎯→←+      
][O][V
][V][O

AABBAAAA

AABBAAAA
2 ⋅

⋅
=K   2

2 exp
E

K
kT

Δ⎛= −⎜
⎝ ⎠

⎞
⎟          (3) 

ABBBAAAAABBBAAAA VOOV +⎯→←+      
][O][V
][V][O

ABBBAAAA

ABBBAAAA
3 ⋅

⋅
=K   3

3 exp
E

K
kT

Δ⎛= −⎜
⎝ ⎠

⎞
⎟          (4)  

BBBBAAAABBBBAAAA VOOV +⎯→←+      
][O][V
][V][O

BBBBAAAA

BBBBAAAA
3 ⋅

⋅
=K   4

4 exp
E

K
kT

Δ⎛= −⎜
⎝ ⎠

⎞
⎟          (5)

   
Here ΔEn (n = 1,2,3,4) is the “binding energy” of a vacancy inside a tetrahedron consist-
ing of n B-cations. It is given by the energy difference between a vacancy in that tetrahe-
dron and a vacancy in an AAAA-tetrahedron. Entropic contributions to the mass action 
constants Ki are believed to be negligible. [Vijkl] and [Oijkl] (i,j,k,l = A,B) are the fractions 
of oxygen vacancies and oxygen ions sitting inside ijkl-tetrahedra. In addition, we have to 
consider the condition of charge neutrality, xB = 2xV. 

 
 ( )][V][V][V][V][V2 BBBBABBBAABBAAABAAAAB ++++=x                           (6) 
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From Eqs. (1)-(6) the fractions of vacancies occupying ijkl-tetrahedra, [Vijkl], can be 
calculated as a function of the dopant fraction, xB, and the temperature T (using the results 
for the cation distribution in Eq. (1)).  

B

 
Fig. 2 shows the vacancy fractions for vanishing interaction between B-cations and 

oxygen vacancies (statistical vacancy distribution) and for attractive interaction. For 
simplicity we have assumed that the total B-V interaction energy in a tetrahedron con-
taining n B-cations is given by ΔEn = n⋅ΔE1 (n = 0,1,2,3,4). 

  

Δ Δ

 
Fig. 2 Oxygen vacancy fractions, [Vijkl] (i,j,k,l=A,B), in different tetrahedra as a function of 
the dopant fraction, xB, at T = 1273 K. (a) vanishing dopant-vacancy interaction energy, ΔEB 1 

= 0 (b) attractive dopant-vacancy interaction, ΔE1 = -0.1 eV. 
 
The binding energy, ΔE1 = -0.1 eV, that was used in Fig. 2b is typical for dopant ions in 
YSZ [11,12]. Compared to the statistical vacancy distribution the probability to find a 
vacancy inside tetrahedra containing B-cations has increased. For repulsive interaction 
between dopants and vacancies (not shown in Fig.2) the fraction of vacancies occupying 
B-tetrahedra decreases [19].  

2.2 Oxygen ion conductivity 
Simple conductivity models where all vacancies contribute to the conductivity in the 

same way, i.e. with the same mobility, 2)/(const[V]const Bxσ ⋅=⋅= , and models consid-
ering site blocking 2)/(12)/(const[V])(1[V]const BB xxσ −⋅⋅=−⋅⋅=  cannot explain the 
experimentally observed maximum in the conductivity nor the dependence of the conduc-
tivity on the chemical nature of the dopant. Thus, we must consider the microscopic jump 
processes of vacancies and their jump rates, ω, in more detail. Since we have restricted 
the B-V interactions to nearest neighbor interactions, the vacancy jump rate from one 
specific site to an adjacent specific site depends only on the nearest neighbor cation con-
figuration of the vacancy before the jump (i.e. the type of tetrahedron) and the nature of 
the edge which has to be crossed (A-A, A-B or B-B). The resulting 9 jump frequencies 
are denoted by ωn,m where n and m are the numbers of B-cations in the tetrahedron before 
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the jump and in the edge to be crossed (see Fig. 3). Due to detailed balance, always two 
jump frequencies are coupled, e.g. ω1,0/ω0,0 = exp(ΔE10/kT), where ΔE10 is the difference 
between the vacancy binding energies in the tetrahedra AAAB (ΔE1) and AAAA (ΔE0). 
In summary, there are only three independent frequencies, which can be taken as ω0,0, 
ω1,1 and ω2,2 (for details see [19]). 

 

 
 

Fig. 3 Jump rates of oxygen vacancies, ωn,m, from a tetrahedron with n B-cations through an 
edge with m B-cations (grey circle = A, black circle = B, grey/black circle = A or B). 

 
An oxygen vacancy inside an AAAA-tetrahedron can perform 6 jumps through the 

six edges with a jump frequency ω0,0. A neighboring tetrahedron must be of the type 
AAAA, AAAB or AABB (sharing an A-A edge with the AAAA-tetrahedron) and it must 
not be occupied by a vacancy. Thus, the probability for the neighboring tetrahedron to be 
accessible is [OAAAA]+[OAAAB]+[OAABB] and the partial ionic conductivity of vacancies 
VAAAA is given by ( )][O][O][Oω6][Vconst)σ(V AABBAAABAAAA0,0AAAAAAAA ++⋅⋅⋅⋅= . 

 
Counting the contributions of the other vacancies in a similar way, we obtain finally: 
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 To proceed we must specify all jump frequencies in terms of the dopant-vacancy 
interaction energy, ΔE1, and the barrier energies, ΔEAA, ΔEAB, and ΔEBB, for jumps across 
A-A, A-B and B-B edges. We will again consider the three cases, (I) statistical vacancy 
distribution, (II) attractive B-V interaction, and (III) repulsive B-V interaction. In addi-
tion, we will consider for each of the three cases (a) identical barrier energies (ΔEAA = 
ΔEAB = ΔEBB = 0.58 eV), and (b) blocking A-B and B-B edges (ΔEAA = 0.58 eV, ΔEAB = 
1.29 eV and ΔEBB = 1.86 eV [17]). For T = 1273 K the results are shown in Fig. 4. 

 

 

Fig. 4 Dependence of the oxygen ion conductivity, σ, on the dopant fraction, xB, accord-
ing to Eq. (8) at T = 1273 K (ΔE

B

1 = dopant-vacancy interaction energy; identical barriers: 
ΔEAA = ΔEAB = ΔEBB = 0.58 eV; blocking: ΔEAA = 0.58 eV, ΔEAB = 1.23 eV, ΔEBB = 1.86 
eV [ ]).  17
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Fig. 4 shows that for a statistical vacancy distribution and identical barrier energies 
the conductivity increases monotonically with the dopant fraction (in Fig. 4 only the 
initial part of the curve is shown) while for blocking A-B and B-B edges the conductivity   
goes through a maximum at xB ≈ 0.27. For weak dopant vacancy-binding, ΔE1 = -0.1 eV, 
and identical barriers the conductivity first increases with the same slope as before, goes 
then through a broad maximum at xB ≈ 0.2 and eventually decreases slowly. The maxi-
mum conductivity is about a factor 2 smaller than without binding. For stronger dopant 
vacancy-binding, ΔE1 = -0.2 eV, the maximum appears already at xB ≈ 0.07 and the maxi-
mum conductivity is about a factor 6 smaller than without binding. For blocking A-B and 
B-B edges the maximum appears already at xB ≈ 0.13 (ΔE1 = -0.1 eV) and the conductiv-
ity maximum is sharper than without edge blocking. The maximum conductivity is only 
slightly smaller than without blocking. For stronger dopant vacancy-binding, ΔE1 = -0.2 
eV, edge blocking has only very slight influence on the conductivity curve.  For repulsive 
B-V interaction, a maximum in the conductivity is only obtained with blocking A-B and 
B-B edges. In contrast to the other cases the maximum is very broad and close to xB = 0.5. 

 
As shown in [19], our model yields an activation energy, Ea, of the conductivity 

which decreases with increasing temperature, as observed experimentally [20], only for 
attractive B-V interaction. In all other cases, i.e. for vanishing or repulsive interaction, Ea 
remains essentially constant. Our model also predicts a dependence of the conductivity 
activation energy on the dopant fraction: A statistical vacancy distribution and identical 
barrier energies result in a constant activation energy, Ea = 0.58 eV, as expected. If we 
introduce blocking A-B and B-B edges the activation energy remains unchanged up to 
dopant fractions xB ≈ 0.6, i.e. the vacancy follows essentially only jump pathways across 
A-A edges. Only for higher dopant fractions jump pathways across the blocking A-B and 
B-B edges start to contribute to the conductivity, and, consequently, the conductivity 
activation energy increases. For attractive dopant-vacancy interaction the conductivity 
activation energy increases monotonically with increasing dopant fraction, xB, already for 
very small x

B

BB. This behavior is due to the fact that already for small xB more vacancies 
are trapped inside AAAB-tetrahedra than in AAAA-tetrahedra (see Fig. 2). With increas-
ing dopant fraction more and more vacancies are trapped in tetrahedra containing n = 1,2, 
3 or 4 B-cations. As a consequence the activation energy increases from 0.58 eV at x

B

B = 0 
(n = 0) continuously to (0.58 + 4⋅0.1) eV = 0.98 eV at xB ≈ 1. If we introduce in addition 
blocking A-B and B-B edges the activation energy strongly increases for xB > 0.7 show-
ing that now also jumps across A-B edges start to contribute to the conductivity. For 
repulsive B-V interaction (case (III)) the activation energy slowly decreases with increas-
ing dopant fraction from 0.58 eV (n = 0) to about (0.58 - 4⋅0.1) eV = 0.18 eV (n = 4). 

2.3 Conclusions 
We have presented a simple analytical model for a strongly acceptor doped fluorite-

type oxygen ion conductor, i.e. a concentrated solution of AO2 and B2O3. The model 
considers a statistical distribution of cations and interactions between oxygen vacancies 
and dopant cations. The oxygen vacancies were distributed to the AAAA-, AAAB-, 
AABB-, ABBB and BBBB-tetrahedra in the fluorite structure using quasi-chemical reac-
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tions for the equilibrium between the different sites. The resulting vacancy distribution 
was then used in a simplified model for the ionic conductivity which considers different 
jump rates of oxygen vacancies that depend on the local configuration and the nature of 
the cation-cation edge that has to be crossed during a jump.  

We have considered three cases for the vacancy distribution, (I) vanishing B-V inter-
action, (II) attractive B-V interaction, and (III) repulsive B-V interaction, and two cases 
for the jump activation energies through cation-cation edges, (a) identical jump energies 
and (b) blocking A-B and B-B edges. For case (Ia) (vanishing B-V interaction and identi-
cal barrier energies) and for case (IIIa) (repulsive B-V interaction and identical barrier 
energies) the conductivity increases monotonically with the dopant fraction. In all other 
cases we have found a maximum in the conductivity as a function of the dopant fraction. 
With increasing dopant fraction, the activation energy of the ionic conductivity remains 
constant in case (I), it increases in case (II), and it deceases in case (III) (for xB < 0.7).  

If we consider the experimental findings in YSZ (narrow conductivity maximum at xB 

≈ 0.15, conductivity activation energy that decreases with increasing xB and slightly de-
creases with increasing temperature [ , , , ]) we can conclude that only weak attrac-
tive interaction between Y and oxygen vacancies combined with blocking Y-Zr and Y-Y 
edges can reproduce the experimental data.  

B

8 9 20 21

Another experimental finding concerns the dependence of the conductivity on the 
type of dopant. Badwal et al. [20] investigated the conductivity of zirconia that is co-
doped with Y and Sc. In a composition series from YSZ to ScSZ they found at T > 
1000K a continuous increase of the oxygen ion conductivity. According to atomistic 
simulations Sc has a smaller binding energy to vacancies than Y [11,12]. In addition, we 
expect the edge blocking effect of Sc to be smaller than that of Y because Sc has a 
smaller ionic radius than Y. Following our model, both effects result in an higher ionic 
conductivity of ScSZ compared to YSZ. Qualitatively ScSZ corresponds to case IIb1 in 
Fig. 4 and YSZ to case IIb2. Due to the smaller edge blocking effect our model predicts a 
broader conductivity maximum in ScSZ than in YSZ. However, to the author’s knowl-
edge experimental data for the dependence of the oxygen ion conductivity of ScSZ on the 
Sc-fraction are not available. 

It must be emphasized that our model contains several approximations. We have lim-
ited all interactions to nearest neighbor interactions. Qualitatively, this might be justified 
due to the high ionic strength in these electrolytes and the resulting short Debye length. A 
more detailed analysis must consider also next-nearest neighbor interactions and possible 
binding at these sites as suggested in [11, 12]. Furthermore, we have neglected vacancy-
vacancy interactions, which would influence the vacancy distribution and the vacancy 
jump rates. Correlation effects which are caused by the locally different jump rates were 
only considered in a first approximation and only for successive jumps (see Eq. (8)). In a 
more accurate analysis the correlation effects must be considered through correlation 
factors [16]. The correlation effects will reduce the conductivity at higher dopant frac-
tions, resulting in a more pronounced maximum. The same applies to the percolation 
phenomena, e.g. of pathways only across A-A edges, that have been considered in detail 
in reference [15] but have been neglected in our investigation. 
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Finally we can draw the following conclusion. Our model for a strongly acceptor-
doped, fluorite-type oxygen ion conductor, (e.g. A=Zr, B=Y) shows, despite of the ap-
proximations we have made and the resulting limitations, that the oxygen ion conductiv-
ity is not only determined by the jump rates through the A-A, A-B and B-B edges but to a 
similar extent by the vacancy distribution to the cation tetrahedra. The maximum in the 
conductivity and the increase in activation energy with the dopant fraction are due to 
vacancy binding in the B-containing cation tetrahedra combined with reduced jump rates 
across A-B and B-B edges.  

3. Cation tracer diffusion in LSGM 
In oxides with dominating oxygen disorder cation defects are only minority defects 

and consequently cation diffusion is much slower than oxygen diffusion. Cation diffusion 
is nevertheless important since the slowest moving species determine many fundamental 
processes, such as sintering [22], creep [23] or internal friction [24]. 

An important example is yttria stabilized zirconia, (Zr1-xYx)O2-x/2 (YSZ). Cation diffu-
sion studies [25,26,27] show that Zr diffusion becomes slower with increasing Y-
content. This is due to the fact that the dopant yttrium determines the fraction of oxygen 
vacancies, which again determines via the Schottky equilibrium ( ) the 
fraction of cation vacancies. Thus cation diffusion should be slower the higher the dopant 
fraction, as observed. As expected, comparison of the self-diffusion coefficients of oxy-
gen and cations in YSZ shows that D

••+′′′′↔ OZr V2Vnil

O is about 5 orders of magnitude larger than Dcation .  
Similar results were found for doped lanthanum gallate, La1-xSrxGa1-yMgyO3-(x+y)/2 

(LSGM), which has a higher oxygen ion conductivity than YSZ and is therefore a candi-
date for solid oxide fuel cells working at intermediate temperatures [28]. Here oxygen 
diffusion coefficients [29] and impurity diffusion coefficients of several cations [30,31] 
have been measured.  

In this chapter we summarize some recent results for tracer self-diffusion of lantha-
num, strontium and magnesium in La0.9Sr0.1Ga0.9Mg0.1O2.9 (LSGM1010) [32]. The diffu-
sion experiments were performed with stable, strongly enriched isotopes of La, Sr and 
Mg, and the diffusion profiles were measured with ToF-SIMS depth profiling. Typical 
penetration profiles for 138La, 84Sr and 25Mg obtained by SIMS are shown in Fig. 5. In 
each profile one can distinguish two different parts. At small penetration depths (up to 
100 nm) the profile has a steep slope and refers to bulk diffusion. At larger penetration 
depths the slope decreases, and the profile refers to a mixture of grain boundary and bulk 
diffusion after Fisher’s model [33] of simultaneous bulk and grain boundary diffusion in 
polycrystalline materials. The bulk diffusion coefficients of 138La, 84Sr and 25Mg were 
obtained by fitting the thin-film solution [32] to the bulk part of the experimental profiles 
and are shown in Fig. 6 as a function of the inverse temperature. The apparent activation 
energies, Ea, were calculated from the local slope of these curves, Ea = -R⋅(d lnD/d(1/T)). 
It was found that the apparent activation energies of the tracer diffusion coefficients of 
138La, 84Sr and 25Mg change from about 1.5 eV at 900°C to about 4.5 eV at 1400°C.  

The grain boundary diffusion coefficients which can be obtained from the tails of the 
diffusion profiles [34,35] are about three to four orders of magnitude higher than the 
bulk diffusion coefficients.  
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Fig. 5 Typical diffusion profiles of 138La, 84Sr and 25Mg in polycrystalline 
La0.9Sr0.1Ga0.9Mg0.1O2.9 measured by SIMS (T=1400°C, tdiff= 1.61 h). All profiles were 
corrected by the background signal of the corresponding isotope and the matrix-element 
139La and then normalized to 1. The lines show the fit of the thin film solution to the bulk 
part of the profiles [32]. 
 

 
 

Fig. 6 Bulk diffusion coefficients of 138La,84Sr and 25Mg in La0.9Sr0.1Ga0.9Mg0.1O2.9 as a 
function of the inverse temperature. 
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In LSGM, acceptors, La  and GarS ′ gM ′ , and charge compensating oxygen vacancies, 
 are the majority defects (see Introduction) while cation vacancies in the A- and B-

sublattices of the perovskite LSGM are only minority defects. As a result, the cation 
diffusivities are very small, and at low temperatures it is nearly impossible to equilibrate 
LSGM samples (concerning their minority defect structure). This means, that the defect 
structure which was established at high temperatures will be frozen in at an intermediate 
temperature when the samples are cooled. Thus, the apparent activation energies of the 
diffusion coefficients should increase with increasing temperature, as observed experi-
mentally. At low temperatures the values correspond to the migration energy of the 
cations (about 1.5-2 eV), whereas at high temperatures they correspond to the sum of the 
migration energy and the formation energy (2.5-3 eV) of the defects by which the cations 
are mobile. 

••
OV

The nearly identical cation migration energies and diffusion coefficients found in our 
experiments are in contradiction to the expectations for cation diffusion in a perovskite 
structure. Assuming a simple vacancy mechanism, diffusion of B cations should be much 
slower than diffusion of A cations, because B cations cannot perform direct nearest 
neighbor jumps, in contrast to A cations. Theoretical calculations of the cation migration 
energies support this expectation. Khan et al. [36] have obtained Emig(LaA) = 4.6 eV and 
Emig(GaB) = 16.9 eV, and De Souza and Maier [ ] have calculated EB 37 mig(SrA) = 2.8 eV, 
Emig(LaA) = 4.7 eV and Emig(GaBB) = 14.7 eV. The large migration energy for B cations is 
caused by the fact that during that jump the B cation comes into close contact with the 
large A cation, which results in strong coulombic repulsion [37,38]. 

To explain our experimental observations we have proposed a more complicated dif-
fusion mechanism [32]. Cation vacancies in the A- and B-sublattices, AV ′′′  and B , and 
oxygen vacancies, , can form defect clusters which are strongly bound due to the 
coulombic forces between the defects. Already the most simple cluster, ,  
enables a coupled transport of A- and B-cations. The cluster is shown in Fig. 7 in a two-
dimensional projection of the cubic perovskite structure of LSGM. Note that oxygen ions 
and B-cations are in one plane while A-cations are located above (or below) that plane. 
The cluster can move through the lattice without dissociating into individual defects in 
four correlated steps. In the first step, an oxygen ion jumps to a vacant oxygen site, in 
step two an A-cation jumps to a vacant A-site, and in the third step another oxygen ion 
jumps into the oxygen vacancy. Now, in the fourth step, a B-cation can perform a jump to 
the nearest neighbor vacant B-site. This jump pathway is probably curved, but due to the 
adjacent, vacant A-site the B-cation does not come into close contact with the large A-
cation. Thus, the corresponding activation energy should be much smaller than for the B-
jumps considered in the atomistic simulations. As a result of the four correlated jumps, 
the whole cluster is displaced by half a lattice constant (as shown in the last part of Fig. 
7), and both an A-cation and a B-cation have moved simultaneously. The activation en-
ergy of the whole process is determined by the step with the highest activation energy. 
Since the activation energy for a jump of an oxygen ion is only 0.6 eV [

V ′′′
••

OV
}V,V,V{ OBA

••′′′′′′

39] steps two or 
four must be rate determining (considering our experimental value of about 2 eV for the 
migration energy).  
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Fig. 7 Defect cluster, , in  the perovskite LSGM and four-step jump mecha-
nism by which the cluster is mobile without dissociation (two-dimensional projection of 
the cubic perovskite structure; oxygen ions and B-cations are in one plane while A-
cations are located above or below that plane).  

}V,V,V{ OBA
••′′′′′′

 
The implications of the postulated cluster mechanism in LSGM were considered re-

cently [40] in a theoretical paper. Sum-rule expressions for the collective correlation 
factors were derived and found to be in excellent agreement with Monte Carlo calcula-
tions. Expressions were also developed for the tracer correlation factors of lanthanum and 
gallium for diffusion via the cluster mechanism and tested by Monte Carlo computer 
simulation. Good agreement was found. The calculations also show, that the ratio of the 
tracer diffusivities of A- and B-site cations, DA/DB, can only vary between 10  and 10 , 
in good agreement with the experimental results (see Fig. 6). 

B

-1 1

3.1 Conclusions 
Cation tracer diffusion coefficients of La, Sr and Mg have been measured in Sr- and 

Mg-doped lanthanum gallate, La1-xSrxGa1-yMgyO3-(x+y)/2. The bulk diffusion coefficients 
are similar for all cations with apparent activation energies which are strongly dependent 
on temperature. To explain these findings the formation of a defect cluster was proposed 
which consists of vacancies in the A-, B- and O sublattices, . The cluster is 
strongly bound and can move through the perovskite lattice by a postulated four-jump 
diffusion mechanism without dissociation. In this way A- and B-cations are moved si-
multaneously resulting in identical diffusion coefficients. The observed increase of the 
apparent activation energy of the diffusion coefficients with increasing temperature is 
explained by a non-equilibrated defect structure of the minority defects at lower tempera-
tures.      

}V,V,V{ OBA
••′′′′′′
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