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Abstract 
 Flow propagators have been frequently used in characterisation of porous media and the 
study of fluid transport behaviour. Previous work considered the shape of measured flow 
propagators using Nuclear Magnetic Resonance (NMR) discussed the influence of pore 
geometry, dispersion, relaxation and internal gradients. In addition, numerically simulated 
flow propagators were also reported. However, a quantitative numerical analysis of local 
contributions to flow propagators has not been considered in the literature, yet may provide 
significant new insights into the flow behaviour through complex porous media. In this work 
we use two types of beads to realize a dual-scale bead pack consisting of micro- and macro-
pore regions for the NMR experiments. A low-field NMR system (2 MHz) was used to 
measure flow propagators for this sample. We further generated a dual-scale Gaussian 
Random Field (GRF) image based on porosity, beads diameters and volume fraction of each 
type of bead for numerical simulations. A Lattice Boltzmann Method (LBM) and Random 
Walk (RW) technique were combined to derive the simulated flow propagators and validated 
against experiments. We carry out a local analysis of the flow propagators showing a 
significant difference in bandwidth of displacements in micro- and macro-pore regions. In 
addition, the local flow propagators indicate a linear relationship between mixing (the fluid 
exchange on regions' boundaries) and flow velocities as well as a non-linear correlation 
between mixing and evolution times.  
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1. Introduction 
 NMR flow propagators measure the probability distribution of displacement. The are 
widely used in porous media characterisation and flow behaviour research, which can benefit 
many areas, such as the oil industry, groundwater engineering, waste management, carbon 
capture and sequestration. Over the past two decades, Scheven et al. (2004) [1], Packer et al. 
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(1998) [2], Johns et al. (2003) [3], measured flow propagators for fluids in bead packs, 
sandstones and carbonates and comprehensively discussed how pore geometry and other 
effects, e.g. relaxation and internal gradient, affect the shape of flow propagators. Transport 
behaviour, especially dispersion had also been studied by many researchers [4-6].  A variety 
of propagator-based techniques have been developed, including low field NMR flow 
propagator [7], 2D flow propagator [8], rapid measurement of flow propagator [9] and T2-
resolved flow propagator [10], all of which make it an attractive and powerful tool to 
characterise flow in porous media. Single-phase flow propagators were simulated numerically 
[11-12]. 
 The spatially-resolved or local propagators are potentially a sensitive probe to the 
connectivity of different morphological units of a heterogeneous sample and thus very useful 
for the characterisation of their transport properties; however, an experimental 
implementation is complicated. This might be the reason why numerically simulated local 
propagators have not been reported. In this work, we successfully simulated local flow 
propagators in a dual-scale bead pack represented by a digitized model. Numerical results 
were validated by matching experimental and simulated global flow propagators.  

2. Experiments 
A bead pack sample made of two types of beads (mean diameters are 0.5 and 1.5 mm) was 

studied. These two types of beads were packed in clusters to generate distinctive regions with 
different pore sizes inside a tube of 3 cm in diameter, 5 cm in length. The total volumes of 
each kind of bead are the same. We measured the weight difference between dry and 100% 
water saturated sample, and the weight of water in pores corresponds to the volume of 52 cm3 
in the total cylindrical volume of 141.37 cm3.  So the measured average porosity is 37%.  

All NMR flow propagator measurements were performed on a 2 MHz Magritek Rock Core 
Analyzer. A schematic of the pulse sequence used is shown in Fig. 1.  

 
Fig. 1: Pulsed gradient stimulated echo (PGSTE) NMR sequence used for flow propagator measurements 

 
The first 90º pulse tips the magnetization to the transverse plane, and then a pulsed gradient 

field is applied to imprint the initial position distribution onto the phase space of the 
magnetization. Subsequently, a second 90º pulse is applied to store the phase information on 
the longitudinal direction for a period τ2. A final 90º pulse is then applied to bring the stored 
magnetization back to the transverse plane followed by a refocusing pulsed gradient field to 
generate an echo. 

The difference of the spin positions ( ir


) at the first and second gradient pulses produces an 

accumulated phase given by 
 

( ) ( ) ( )[ ] ( )[ ]ΔRδgγ=rΔrδgγ=Δφ iiii
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 which is the phase shift of the i-th spin that moved a distance ( )ΔRi


 along the direction of the 

applied gradients’ g . In Eq. (1) γ  is the gyromagnetic ratio, and δ  denotes the duration of 
applied gradients.  
 The amplitude of the echo is measured for a set of gradient intensities from –g to +g and 

flow propagator ( )RPΔ


 is obtained from a Fourier transformation of all echo amplitudes as 
function of the gradient intensity [13-14]: 
  

( ) ( ) ( ) RdeRP=qs ΔRπqi
ΔΔ

 

 ⋅2 ,                                                                                         (2) 

 
where δ/(2π)gγ

 =q , and it is also known as magnetization wave vector. 

3. Simulations 

3.1. Modelling the dual scale pore structure 

 We created a 3D digitised representation of the dual scale bead pack system used for lab 
measurements. The resulting model acknowledges bead size, porosity and volumetric fraction 
of each type of bead. We employed the Gaussian Random Field (GRF) approach to generate 
the boundaries between phase clusters, constraining the volume of each phase by 
experimental data. These two phases were seeded with spheres of 5 voxels and 15 voxels in 
diameter respectively following a Poisson process [15], resulting in four phases – solid and 
fluid in each of the macro-porous and micro-porous regions.  

 
Fig. 2: A slice through GRF dual scale bead pack model image of 8003 voxels, where the pore space of different 
scales received separate labels and both all beads are labelled similarly (for solid).  

3.1. Generation of velocity field 

 The velocity field was generated from a single phase flow Lattice Boltzmann Method 
(LBM) solver. This method has proved very successful in simulating fluid flow though porous 
media [12]. In this simulation we used a D3Q19 lattice, corresponding to 3 dimensions and 19 
velocity vectors [16]. The flow direction was the same as in experiments. The LBM 
simulation generates a velocity field with mean velocity of 1, calculated for the case of 
laminar flow. When we simulate flow propagators, the velocity field is then scaled to the 
mean velocity of experimental measurements. 
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3.2. Simulation of flow propagators 

The GRF dual scale image was seeded with 8003 particles, thus one particle in every voxel, 
and all particles (representing fluids) were initially sited at the central point of their voxels. 
Convection-diffusion was applied as the transport model. For each time step dt , the 

displacements of convection cd


were calculated from the velocity field  

 

( )zy,x,vdt=dc


∗ ,                   (3) 

 
where ( )zy,x,v  is a velocity vector for particles at the position ( )zy,x, . Then we used a 
random walk method to simulate diffusion. In 3D simulation, the displacements due to 
diffusion dd is calculated by 

 

Ddt=dd 6  ,               (4)  

 
where D  is the self-diffusion coefficient of fluid. The direction of dd  is randomly chosen 

from 6 directions in 3D grids. We apply no-slip boundary conditions at the fluid-solid 
interphase. After a total time period of Δ , we plotted the displacement distribution, thus flow 
propagator.  
 In addition, we tracked the movement of fluids as well as their residence time in different 
phases for local numerical analysis. 

4. Results 

4.1. Global flow propagators 

Fig. 3 shows the flow propagator measurements and simulations at different evolution times. 
The shape of the simulated flow propagators at different displacement times is similar to the 
experimentally observed propagators. Furthermore, mean displacements between simulations 
and experiment are within 5%. This suggests that the generated GRF image is representative 
for the dual scale bead pack and that the propagator simulations based on it are accurate. 
 

 
Fig.3: (a) Simulation of flow propagators on a dual scale GRF image. (b) NMR measurements of flow 
propagators of dual scale bead pack. 
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4.2. Local flow propagators 

 We extract local information from our simulation, which cannot be accessed from the 
experimental measurements used in this work. Micro- and macro-pore regions were given 
separate labels and we tracked the position of random walkers and time they stayed within 
each region. The acquired displacement information enables us to calculate local flow 
propagators (Fig. 4).  

 
Fig.4: Local flow propagators at mean velocity 1842 μm/s, displacement time 240 ms. Time fraction indicates 
the time one particle stays in macro pore regions. The legend also shows the volume of particles of a certain time 
fraction.  
 
 As shown in Fig. 4, the bandwidth of flow propagator calculated for the micro-pore region 
(time fraction equals 0) is much narrower than in the macro-pore region (time fraction equals 
1), which directly illustrates the permeability difference of micro and macro pore regions. For 
particles which crossed region boundaries (time fraction ranging from 0.1 to 0.9), the 
bandwidths of their flow propagators sits in-between and the volume is relatively small at this 
displacement time and global mean flow velocity. 
 Varying mean velocities and displacement times, we calculated the total mixing volume 
(sum up all mixing volumes of time fraction ranging from 0.1 to 0.9) for all scenarios (Table 
1). 
 
Table 1: Mixing fraction at different velocities and various displacement times  

Velocity                Time 40 ms 80 ms 160 ms 320 ms

      0 μm/s  0.038 0.052 0.071 0.097

  574 μm/s 0.045 0.068 0.107 0.170

1151 μm/s 0.058 0.094 0.153 0.253

1842 μm/s 0.074 0.123 0.206 0.341

 
 Table 1 illustrates that the mixing fraction increases with time and mean flow velocity. We 
plotted the data of Table 1 to study the influence of time and velocity on the mixing volume 
separately. At fixed displacement time, mixing content increases linearly with velocity, while 
at fixed velocity, the mixing content has a non-linear correlation with time (Fig. 5).  
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Fig.5: (a) Correlation between mixing volume and mean velocity at various displacement times; (b) Correlation 
between mixing volume and observation time at various velocities. 
 
 Mixing may occur due to either convection flow or diffusion. At a fixed observation time, 
the contribution to mixing fractions from diffusion can be assumed constant, and these 
fractions are plotted in Fig. 5(a), where the velocity equals 0 μm/s. In the same plot, the 
mixing volume increases almost linearly with velocity increase, indicating a major 
contribution from convection flow at higher velocities, otherwise it should be a non-linear line 
due to diffusion effects. This can be proved from the data points where the velocity is smaller 
than 574 μm/s (corresponding Peclet number for the sample is 260). These points deviate 
from the straight line for low velocities because diffusion is dominant. To further illustrate 
this behaviour, we plot the same data in a different way in Fig. 5(b). For each given fixed 
mean velocities, a non-linear correlation between mixing volume and observation time is 
observed. Higher velocities reduce the influence of diffusion, so the curve transforms 
gradually from a non-linear shape for pure diffusion (red line) to more linear-like shapes at 
higher mean velocities.   

5. Conclusions 
Numerical simulations based on GRF image agree well with the experimental NMR flow 

propagator measurements, indicating that the generated dual-scale system is representative. 
Local analysis shows the significant difference in bandwidth of propagators in micro-pore and 
macro-pore regions, which is expected. Interestingly, the transport phenomenon on regions' 
boundaries suggests that the mixing volume increases linearly with mean velocity and holds a 
non-linear correlation with evolving time. It is worth mentioning that both experiments and 
simulations were conducted in limited observation times where the measurements are not 
significantly affected by T1 and T2 relaxations. Further study may be done for longer 
observation times. The mixing volume may converge to a certain value less than 1, indicating 
a high flow rate path. Otherwise, given long enough time, the fluids at macro-pore and micro-
pore regions may be fully mixed at a critical velocity. However, it requires a proper 
experiment to ground this prediction.      
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