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Abstract

Time-domain NMR, in one and higher dimensionalities, makes routine use of inversion algorithms to gen-
erate results called “T2-distributions” or joint distributions in two (or higher) dimensions of other NMR
parameters, T1, diffusivity D, pore size a, etc. These are frequently referred to as “Inverse Laplace Trans-
forms” although the standard inversion of the Laplace Transform long-established in many textbooks of
mathematical physics does not perform (and cannot perform) the calculation of such distributions. The
operations performed in the estimation of a “T2-distribution” are the estimation of solutions to a Fredholm
Integral Equation (of the First Kind), a different and more general object whose discretization results in a
standard problem in linear algebra, albeit suffering from well-known problems of ill-conditioning and com-
putational limits for large problem sizes. The Fredholm Integral Equation is not restricted to exponential
kernels; the same solution algorithms can be used with kernels of completely different form. On the other
hand, (true) Inverse Laplace Transforms, treated analytically, can be of real utility in solving the diffusion
problems highly relevant in the subject of NMR in porous media.

Keywords: T2-distribution, Laplace Transform, Inverse Laplace Transform, Fredholm Integral Equation

1. Introduction

Low-resolution NMR (with limited spectral resolution) concentrates on relaxation parameters such as
T1,2 or diffusivity D0. Such measurements are ubiquitous in the study of porous media, either for themselves
or for derived parameters such as pore size a which may be based on measurements of the relaxation or
diffusion parameters. In such applications, spectral resolution (along a frequency axis, for NMR chemical
shift δ) is typically absent. In many systems on which such data are acquired, the inhomogeneity of the
static field B0 available may exceed the dispersion in chemical shift δ, and thus dominate any information
in principle available from δ. The basic data acquired in a NMR experiment are almost always quadrature-
detected transverse magnetization in the time domain:

S(t) = Mx(t) + iMy(t) + enoise(t) (1)

where enoise(t) represents a (complex) time-dependent noise process which can never be wholly disregarded.
In chemical spectroscopy the use of the Fourier Transform to display information in the conjugate frequency
domain is ubiquitous; a (complex) spectrum in (cyclic) frequency ν is obtained from signal SF(t) (typically
a Free Induction Decay) as

S(ν) =

∫ ∞
−∞

SF(t) e−2πiνt dt (2)
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Whether the forward or inverse Fourier Transform is used is (almost) immaterial because of the (near)
symmetry between the forward and inverse transforms. The spectrum S(ν) may be understood as the
relative weights of individual complex sinusoids e+2πiνt in an expansion of the measured signal SF(t):

SF(t) =

∫ ∞
−∞
S(ν) e+2πiνt dν (3)

Equations (2) and (3) are related by the Fourier Integral Theorem; SF(t) and S(ν) conveniently form a
Fourier Transform pair. The use of cyclic frequency ν rather than angular frequency ω = 2πν conforms to
experimental practice and conveniently results in unit normalization factors in both (2) and (3). Practical
data processing uses the widely-available FFT algorithm. With quadrature detection (complex S(t)) a sense
of rotation is distinguishable so negative frequencies are well-defined and the doubly-infinite integration
range in (3) makes sense, even if experimental S(t) is zero for t < 0 in (2).

Where relaxation parameters are of primary interest, the universal practice is the estimation of a T2-

distribution i.e. the relative weightings of exponential decays of the form exp(−t/T (i)
2 ):

SC(tn) =

∫ ∞
0

P(T2) e−tn/T2 dT2 (4)

Here several things are changed. Typically the signal SC(tn) is derived from the peaks of an echo train
at discrete tn; the actual echo shapes may retain some spectral information but in this archetype are not
analysed. The data the integration range starts at T2 = 0 because negative relaxation times are entirely
unphysical; finally the kernel function has changed from a complex to a real exponential. The desired data
representation is P(T2), and clearly a solution to equation (4) is required. Because the Laplace Transform
F (s) of some function f(x) is defined by the integral:

F (s) =

∫ ∞
0

f(x) e−sx dx (5)

to which equation (4) has a superficial similarity, many authors in the NMR of porous media describe the
solution P(T2) to equation (4) as an “Inverse Laplace Transform” (or “ILT”) of S(t) by analogy with the
“(Inverse) Fourier Transform” of equation (2). The terminology has been widely followed in many research
papers in the NMR of porous media, e.g. [1, 2] and authoritative texts [3]. However, although SF(t) and
S(ν) are a (valid) Fourier Transform pair, we show below that SC(tn) and P(T2) cannot similarly be treated
as a Laplace Transform pair. Moreover, actual Inverse Laplace Transforms are of genuine use in the theory
of diffusion (and elsewhere). We thus find, within the field of NMR in porous media, the same name used
for two entirely different mathematical objects. This paper therefore offers some pointers as to what are,
and what are not, Inverse Laplace Transforms.

2. Changes of variable

The near-universal practice of presenting results on a logarithmic T2 axis is useful for systems where
relaxation times may span several decades in size; however this is simply a change of variables. If Plin(T2) dT2
is the fraction of the total signal with relaxation times between T2 and T2 + dT2, and we define y = log10 T2,
and Plog(y) dy as the fraction of total signal with log10 T2 between y and y+ dy, then clearly Plin(T2) dT2 =
Plog(y) dy, and thus

Plog(log10 T2) = T2 loge 10Plin(T2) (6)

so the two distributions are simply related and one determines the other. Rarely performed, but useful for
the discussion in this paper, is the related distribution Prate(R2) of relaxation rates R2 = 1/T2. Similarly to
the above, if Prate(R2) dR2 is the fraction of signal with 1/T2 between R2 and R2 +dR2, then Plin(T2) dT2 =
Prate(R2) dR2 and so

Prate(R2) = −T 2
2Plin(T2) (7)
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Hence Prate(R2), Plin(T2) and Plog(log10 T2) are all different representations of the same distribution, based
on the same kernel exp(−t/T2). We may thus write equation (4) as

S(t) =

∫ ∞
0

Prate(R2) e−R2t dR2 (8)

and if Prate(R2) is determined as a solution of equation (8), then Plin(T2) and Plog(x) are similarly determined
by the appropriate change of variables. The lower limit should strictly be adjusted to reflect the physical
fact that bulk relaxation processes impose a floor on relaxation rate at R2B = 1/T2B.

Writing S(t) in the form of equation (8) makes as clear as possible the potential analogy between S(t)
and the Laplace Transform (5). We examine this further below.

3. Laplace Transforms and their relation to Fourier Transforms

The Laplace Transform F (s) of a function f(x) is generally defined by the integral in (5). In elementary
texts (e.g. [4], Ch23 p449 Eq1), F (s) may be regarded as a function of a real variable s, the typical application
being the formal solution of differential equations.

In more advanced texts, e.g. [5–7], F (s) is regarded as a function of a complex variable s, which reveals
the relation between the Fourier and Laplace transforms. The Laplace transform is introduced in [6] as a
means of accommodating functions whose Fourier Transforms do not exist, because the defining integral
(2) diverges. Elementary examples cited are f(x) = x2, and even f(x) = const. The defining integral is
in principle defined on (−∞,+∞) (the “bilateral” Laplace Transform) [8]; however for dynamical systems,
where x is physical time, causality requires impulse or step responses to be zero for x < 0, restricting
attention to functions of the form f(x)H(x) where H(x) is the Heaviside function. This results in the
more familiar “unilateral” Laplace Transform (5) where divergent behaviour as x → −∞ does not prevent
convergence of the integral. Divergences arising as x → +∞ are removed by introducing a “convergence
factor” e−cx for real c > α, where α is some positive parameter, the only purpose of which is to ensure
convergence. The function f(x)e−cxH(x) then possesses a Fourier transform even if f(x) does not:

F(ω) =

∫ ∞
0

f(x) e−cx e−iωx dx =

∫ ∞
0

f(x) e−sx dx (9)

defining the complex Laplace variable s = c + iω. The Fourier Transform F(ω; c > α) of the modified
function f(x)H(x)e−cx is seen to be the Laplace Transform F (s) of f(x), as defined in (5), with s regarded
as a complex variable.

The Fourier Integral Theorem can now be applied to derive the Inverse Laplace Transform:

f(x) =
1

2πi

∫ c+i∞

c−i∞
F (s) e+sx ds (10)

with f(x) = 0 for x < 0. This is a contour integral of the complex function F (s) esx, along any line
<(s) = c = const for c > α, where α is a minimum “convergence factor” dependent on the nature of f(x).
This contour integral, of an analytic function F (s)esx of a complex variable s, is the (true) Inverse Laplace
Transform as given in the standard texts e.g. [5–7].

4. Evaluating Inverse Laplace Transforms

The result (10) is not of use unless the integral can be evaluated. Closed contours enable an appeal to
Cauchy’s Theorem, so theoretical approaches generally close the contour by a large semicircle in the region
<(s) < 0 and allowing the radius R to proceed to R → ∞. This is often called the “Bromwich contour”
after its introduction in [9]. Completion of the contour in <(s) < 0 is necessary for x > 0, so that esx

vanishes as R → ∞; the contribution of the completion semicircle to (10) also then vanishes. But F (s) is
only defined by (5) for <(s) = c > α. However the process of “analytic continuation” allows us to extend
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the domain of definition of a function of a complex variable by means of power series in contiguous or
overlapping circles of convergence, except possibly at singularities of the function F (s)esx. The “calculus of
residues” then evaluates the ILT if the residues of all poles or isolated essential singularities of F (s)esx can
be evaluated. Such methods are described in texts on complex analysis e.g. [10], and depend on F (s) being
known analytically in the complex plane. For the common case where F (s) = g(s)/h(s) with g(s) analytic
and non-zero at all singularities sn, the singularities of F (s)esx are poles corresponding to the zeroes of the
denominator h(s). The residue theorem yields the Inverse Laplace Transform as

f(x) =
∑
n

esnt
g(sn)

h′(sn)
(11)

where h′(s) = dh/ds. In diffusion problems, the singularities typically occur for sn real and negative. The
ILT then yields a discrete set of real exponential decays, with amplitudes found by a simple differentiation,
after locating the singularities, where h(sn) = 0. A specific example is given later.

Where F (s) is known numerically along some line <(s) = c, then the relationship of F (s) to the Fourier
Transform can be exploited:

f(x) =
ecx

2π

∫ +∞

−∞
F (c+ iω)eiωx dω (12)

which is seen to be an Inverse Fourier Transform amenable to numerical evaluation by the FFT algorithm.
Remarkably, knowledge of F (s) for complex s is not always necessary. Several algorithms are known

for estimation of f(x), given knowledge of F (s) along the positive real axis only. A popular method is the
Stehfest algorithm [11, 12] which estimates f(x) at x = X by

f(X) ' loge 2

X

N∑
n=1

VnF (sn) (13)

where F (s) is known at N discrete points sn along the real s axis:

sn =
loge 2

X
n n = 1, . . . N (even) (14)

and the coefficients Vn are given by

Vn = (−1)N/2+n
min(n,N/2)∑
k=[(n+1)/2]

kN/2(2k)!

(N/2− k)!k!(k − 1)!(n− k)!(2k − n)!
(15)

Note that each value of x = X requires a different sampling of sn along the real axis. The relationship
between (13) and the general contour formula (10) is entirely non-trivial; an outline is found in [13] and
[11]. The Stehfest algorithm is powerful for estimating f(x) numerically when F (s) is known to arbitrary
precision for real s; in practice this means an analytical expression for F (s). It is not useful when the
estimates of F (s) at the discrete points sn = n log 2/X are contaminated by noise, or large rounding or
truncation errors.

The above methods cover (a) wholly analytical evaluation of f(x) (for x > 0), where F (s) is known
analytically in the complex plane (b) numerical evaluation of f(x) from numerical data for F (s) along
lines <(s) = const, and (c) numerical evaluation of f(x) given an analytical expression for F (s) for real s
(=(s) = 0). Relevant regions of the complex plane are shown in Figure 1.

5. Are T2-distributions ILTs ?

Are any of the above methods of evaluation of ILTs of value in evaluating T2-distributions ? Comparison
between (8) and (5) reveals a problem: although the kernel function e−R2t is of the required form, integration
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Figure 1: Domain of definition for Laplace Transforms, and
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Figure 2: Experimental echo times nte where S(t) is regarded
as a (forward) Laplace Transform.

is over R2, not t. Thus experimental time t in (8) corresponds to the Laplace variable s in (5), not to the
independent variable x. Treating s as experimental time t creates a contradiction: s is required in general
to be complex, but “complex time” has no physical meaning. There is no possibility of measuring S(t) for
other than real t.

We thus see that methods (a) and (b) above are out of the question for evaluation of P(R2) as an ILT;
the necessary data for “complex time” t can never exist. This is illustrated in Figure 2.

Nevertheless, given experimental echoes SC(t) at times t = nete, is it possible to use methods of type
(c), such as the Stehfest algorithm, for evaluating P(R2) ? This requires knowledge of F (s) only for
<(s) > α. There are several problems: (i) the required sampling points sn do not necessarily correspond
to the experimental points nete; (ii) different sampling of F (sn) is required for different values of X; hence
interpolation of the experimental SC(nete) is always required. Finally, (iii) SC(t) is never known to arbitrary
accuracy because of the presence of measurement noise en(t), as in (1). Conditions for application of the
Stehfest algorithm are not satisfied. Moreover its relationship with (10) remains unclear if SC(t) is undefined
except for real t; there is no “ε-neighbourhood” within which to define an analytic function S, of complex
t, for any point on the real t axis.

We conclude that none of Prate(R2), Plin(T2), nor Plog(log10 T2), can be regarded as ILTs of SC(nete).

6. Fredholm Integral Equations

Many books discuss the most general linear integral equation in an unknown f(x):

λ

∫ b

a

K(x, y)f(y) dy + g(x) = h(x)f(x) (16)

where λ is a parameter, g(x) and h(x) are given functions, and the function K(x, y) is known as the kernel
(or in older texts [14], the “nucleus”). “Volterra” equations have K(x, y) = 0 for y > x and are usually
convertible to ODE’s. “Fredholm” equations have general K(x, y). “First Kind” equations have h(x) ≡ 0;
“Second Kind” equations have h(x) ≡ 1. A “Fredholm integral equation of the First Kind” is therefore a
linear integral equation in f(x) of the general form:

λ

∫ b

a

K(x, y)f(y) dy + g(x) = 0 (17)

Hence (4) is seen to be a Fredholm integral equation of the First Kind, making the correspondences (x, y)→
(t, log10 T2), with the kernel function

K(x, y) = e−t/T2 (18)
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and the unknown f(y) corresponding to the distribution Plog(log10 T2). The experimental data S(t) corre-
spond to the source term −g(x)/λ.

Because there is no limitation on the form of K(x, y), the integral equation terminology applies immedi-
ately to related distributions of relaxation parameters, e.g. of T1, or D, determined by various experimental
methods, where the kernel function K(x, y) is no longer a simple exponential decay as in (18). The integral
equation framework is also generalizable immediately [15] to the multi-dimensional distributions in (T1, T2),
(D,T2) etc, which abound in studies of NMR in porous media.

With the functions f(y) discretized as vectors fj for practical computation, the first kind Fredholm
equation becomes a matrix equation

λKnmfm + gm = 0 (19)

where the index m runs over discretized values of T2 (or log10 T2) and the index n runs over experimental
echo times nte. All the apparatus of linear algebra is then available to guide the solution of (19). In general
Second Kind equations tend to be more stable in numerical solution than First Kind equations because of the
presence of f outside of the integral: λKf = f − g. The “First Kind” qualifier is therefore relevant, because
of the well-known ill-conditioned behaviour of solutions of (4) with exponential kernels. What is meant by
ill-conditioned in this context is that the vectors kn(y) = K(tn, log10 T2) are “almost linearly dependent”
such that the matrix

Gnm =

∫ yb

ya

kn(y)km(y) dy n,m = 1, . . . N (20)

of dimension N2 over N data points, is “almost” singular.

7. Evaluating T2-distributions, and other Integral Equations

Irrespective of terminology, the principal difficulty in practical solution is the ill-conditioned nature of the
numerical task. The usual strategy is regularization, discussed in many sources e.g. [15–17], the review [17]
outlining other strategies also. Similar problems of course occur in many fields other than NMR and general
texts on regularisation include [18–20]. Regularization is available even when the problem is generalized to
multi-dimensional distributions of T1–T2, or D–T2 [15].

Such methods and algorithms are entirely free from any requirement that the kernel be of the form (18).
In [21], and elsewhere e.g. [22], they are used for the estimation of distributions of internal field gradients
gint, relaxivity-independent pore sizes a, and susceptibility contrasts ∆χ. In [23], we employ essentially the
same methods to invert experimental data over recovery times t1 and echo times nte for correlation times τc
and quadrupolar coupling constants QCC, using a complicated kernel given in [23]. Such applications are all
processed by algorithms reviewed in [17]. However they have lost even a passing resemblance to inversion
of a Laplace Transform.

8. Inverse Laplace Transforms in the theory of diffusion

Theoretical work on diffusion in restricted geometries e.g. [24], [25] makes use of Laplace Transform
methods, with actual Inverse Laplace Transforms to derive real time-dependent solutions. We illustrate
this by a simple case taken from [26], one of the foundation papers for NMR in porous media. A slot-
like pore geometry of size a is defined over position x in [0, a], with one relaxing surface at x = a (with
relaxivity ρ), and a reflecting surface at x = 0. The governing equation for magnetization M is the diffusion
equation ∂M/∂t = D∂2M/∂x2 subject to uniform initial conditions M(x, 0) = M0 and boundary conditions
−D∂M/∂x = ρM at x = a and ∂M/∂x = 0 at x = 0. Solving for m(t) = M(t)−M0 involves homogeneous
initial conditions (convenient for the forward Laplace Transform of time derivatives). With overbar denoting
Laplace transforms with respect to time t and primes denoting d/dx, the transformed problem becomes
the ODE

Dm̄′′ − sm̄ = 0 (21)
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subject to m̄′ = 0 at x = 0 and −Dm̄′ = ρ (m̄+M0/s) at x = a. The solution satisfying these conditions is

m̄(s) =
−M0β cosh qx

s [β cosh qa+ qa sinh qa]
(22)

where q =
√
s/D and β = ρa/D which is small in the “fast-diffusion” limit of [26]. This solution remains

however in the s (transform) domain; a (true) Inverse Laplace Transform is required to convert back to
the t (time) domain. This can be done using the calculus of residues as in equation (11) above. The even
symmetry of the denominator in (22) ensures that there are no branch points. The singularities of m̄(s)
occur at s = 0, and the zeroes of the denominator, i.e. the solutions sn to

qa tanh qa = −β (23)

This has no solutions for s real and positive (real q), but for s real and negative (imaginary qa = ip) the
condition reduces to

p tan p = +β (24)

having roots ±pn. These correspond to the required singularities sn = −p2nD/a2 of m̄(s). The ILT is then
given by (11). Differentiating and evaluating the denominator at sn we obtain the (true) ILT as:

M(t)

M0
=
∞∑
n=1

2 cos(pnx/a)

cos pn + pn/ sin pn
exp

(
−p

2
nD

a2
t

)
(25)

where we revert from m(t) to M(t) (the offset −M0 cancels the residue of the pole at s = 0). Spatial
averages over the eigenfunctions cos(pnx/a) are sin pn/pn, yielding the modal intensities

In =
4 sin2 pn

pn [2pn + sin(2pn)]
(26)

The characteristic equation (24), the relaxation times 1/sn, and the intensities In are identical to those
given in [26] (equations 13a–d), by the quite different method of separation of variables.

The Laplace Transform method has the advantage of avoiding potentially complicated quadratures
needed in [26]. The (true) ILT in (25) requires only root-finding and a differentiation for a complete
solution. Beyond this simple example, the LT method is powerful for exploration of the eigenvalue structure
of the much more complicated problems discussed in [24, 25].

9. Conclusions

This paper reports no original research, and apart from the example in Sec. 8, rehearses only theory
readily available in the standard texts. We show however that the terminology of “Inverse Laplace Trans-
form”, or “ILT”, for the calculation of T2 distributions, and their analogues and generalizations, cannot be
rigorously sustained. Acquired NMR data SF(t) and the spectrum S(ν) do form a valid Fourier Transform
pair; however SC(t) and the T2-distribution P(T2) do not form a Laplace Transform pair. In the subject of
NMR applications to porous media, “ILT” is nevertheless widespread for what is actually the regularized
solution of a First Kind Fredholm integral equation. Moreover, the algorithms used in practice are appli-
cable to a much wider class of integral equations than the exponential kernel case. Finally, true ILT’s are
powerful in the theory of bounded diffusion, as we illustrate by a simple re-derivation of basic results from
a foundation paper [26].

Humpty Dumpty [27] held that a word “means just what I choose it to mean”, so we fully expect the
terminology “ILT” to remain widely used for the estimation of P(T2) and its relatives. However Alice then
questioned “whether you can make words mean so many different things”, and this becomes harder to answer
when actual ILT’s are employed in the theory of bounded diffusion, similarly central to the subject of NMR
in porous media. Using the same name (“ILT”) for two entirely different things in the same subject cannot
be conducive to clarity. We suggest that where brevity is required, a “numerical inversion” of equation (4)
is non-specific as to method but avoids any misdirection.
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