## Solid Electrolytes: Extremely Fast Charge Carriers in Garnet-Type ${\rm Li_6La_3ZrTaO_{12}}$ Single Crystals

Bernhard Stanje<sup>1</sup>, Stefan Breuer<sup>1</sup>, Marlena Uitz<sup>1</sup>, Daniel Rettenwander<sup>2</sup>, Stefan Berendts<sup>3</sup>, Martin Lerch<sup>3</sup>, Reinhard Uecker<sup>4</sup>, Günther Redhammer<sup>2</sup>, Ilie Hanzu<sup>1,5</sup>, Martin Wilkening<sup>1,5</sup>

<sup>1</sup> Institute for Chemistry and Technology of Materials, Christian Doppler Laboratory for Lithium Batteries, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria; <sup>2</sup> Department of Chemistry and Physics of Materials, University of Salzburg, Hellbrunnerstrasse 34, 5020 Salzburg, Austria; <sup>3</sup> Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany; <sup>4</sup> Leibniz Institut für Kristallzüchtung (Forschungsverbund Berlin e.V.), Max-Born-Straße 2, 12489 Berlin, Germany; <sup>5</sup> Alistore-ERI European Research Institute, 33 rue Saint Leu, 80039 Amiens, France

E-Mail: wilkening@tugraz.at

The development of all-solid-state electrochemical energy storage systems, such as lithiumion batteries with solid electrolytes, requires stable, electronically insulating compounds with exceptionally high ionic conductivities. Considering oxides, garnet-type Li<sub>7</sub>La<sub>3</sub>Zr<sub>2</sub>O<sub>12</sub> and derivatives, see Zr-exchanged Li<sub>6</sub>La<sub>3</sub>ZrTaO<sub>12</sub> (LLZTO), have attracted great attention because of its high Li<sup>+</sup> ionic conductivity of up to 1 mS·cm<sup>-1</sup>. Despite numerous studies focusing on conductivities of powder samples, only a few use time-domain NMR methods to probe Li ion diffusion parameters in single crystals. Here we report, for the first time, on temperature-variable <sup>7</sup>Li NMR relaxometry measurements using both laboratory and spin-lock techniques to probe Li jump rates in monocrystalline Li-bearing garnets. Timedomain NMR offers the possibility to study Li ion dynamics on both the short-range and long-range length scale. The techniques applied yield a fully consistent picture of correlated Li ion jump diffusion in LLZTO; the data perfectly mirror a modified BPP-type relaxation response being based on a Lorentzian-shaped relaxation function. The rates measured could be parameterized with a single set of diffusion parameters. Dynamic information about the elementary jump processes, such as jump rates and activation energies, were extracted from complete diffusion-induced rate peaks that are obtained when the relaxation rate is plotted vs inverse temperature. Results from NMR are completely in line with ion transport parameters derived from conductivity spectroscopy.

**Acknowledgement.** We thank our colleagues at the University of Hannover and the TU Graz for valuable discussions. Financial support by the Deutsche Forschungsgemeinschaft (WI3600/2-2 and 4-1) as well as by the Austrian Federal Ministry of Science, Research and Economy, and the Austrian National Foundation for Research, Technology and Development is greatly appreciated.

