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Abstract  

 Neutron irradiated copper-boron alloys are employed to study the mutual interaction between 

metallic crystalline lattices and inert gases. Inert gases precipitate to form gas bubbles and their growth 

induces dilation of the matrix. This dilation, technically designated as swelling, affects the structural 

integrity of nuclear fuels during their service. The estimated enthalpy of solution of helium in copper is 

5.5 eV/atom. As a Consequence, its solubility in the copper matrix is extremely poor and it cannot enter a 

copper based matrix via any thermo-chemical route. Hence, recourse to a nuclear reaction is taken to 

impregnate copper with helium.  Helium is produced in situ through neutron irradiation in copper-boron 

alloys as a result of (n) nuclear reaction between boron atoms and neutrons. The characteristic feature 

of the growth of helium gas bubbles driven by isothermal annealing of the metallic matrix is that their rate 

of growth is highly sensitive to the distance of the bubbles from the external surface of the specimen. The 

growth of gas bubbles as a function of time and temperature is modulated by the flow of vacancies from 

the free surface of the specimen. A theory for the surface induced growth of helium gas bubbles in the 

neutron irradiated copper-boron alloys is presented here. 
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1. Introduction  

The presence of helium is unavoidable in the structural materials of fission as well as fusion reactors [1-

5]. The formation and growth of helium gas bubbles causes embrittlement, impairs structural stability and 

reduces the service life of reactor components. In view of these considerations, behavior of trapped 

helium in metallic systems is receiving a great deal of theoretical and experimental attention. Monte Carlo 

[6] and molecular dynamics [7] routines are being used to develop codes to predict the changes in 

mechanical properties and evolution of microstructures. These efforts are directed at evolving 

performance codes to establish the operational margins for the nuclear fuels [7-8].  

Neutron irradiated copper-boron alloys are ideally suited to study the behavior of helium gas bubbles in 

crystalline matrices [9-14]. This is mainly due to the fact that residual radioactivity after irradiation and 

reasonable period of cooling is sufficiently low and the specimen can be safely handled outside the glove 

This work is licensed under a Creative Commons Attribution 4.0 International License. 
To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/



2 

 

boxes.  The estimated enthalpy of solution of helium in copper is 5.5 eV/atom [15].  Such a high enthalpy 

of solution gives rise to extremely poor solubility limits at all temperatures, even up to the melting point. 

Thermo-chemical route, therefore, cannot introduce a significant amount of inert gas that is required in 

the study of their interaction with the host lattice. Ionic implantation [16-17], tritium decay [18-19] and 

the neutron bombardment of B10 atoms [20-21] are the three techniques which can be used to impregnate 

a metallic lattice with helium. Ion implantation forms bubbles in the near surface region up to a depth of 

few hundred nanometers. The difficulties associated with the tritium decay, which yields 3

2He , are the 

long time needed for its decay and hazards involved in the handling a radioactive gas. Neutrons generate 

in situ helium atoms through (n,α) reaction with B10 isotope which constitutes 18 wt% of naturally 

occurring boron. Hence, a nuclear reaction provides a superior alternative to create a uniform distribution 

of helium via boron precipitates.  The nuclear reaction used to introduce helium in copper matrix is as 

follows: 

 
27110 2HeLinB   

The precipitation in the form of gas bubbles and their growth is a diffusion controlled phenomenon and 

the bubbles coarsen progressively in size with time. The coarsening or the growth in the size of bubbles is 

associated with the increase in volume of the matrix. Such a dilation of the matrix due to growth of the 

gas bubbles located within the matrix is technically designated as swelling. In this respect, the growth of 

the inert gas bubbles is different from that of any solid dispersion. In the latter case, the coarsening is not 

accompanied by increase in the volume of the matrix.  The technological importance of swelling lies in 

the fact that it critically affects the dimensional integrity of structural components as well as nuclear fuels 

and reduces their service life. A matrix containing inert gas dilates in direct proportion to the growth 

undergone by the gas bubbles and almost the entire increase in volume of the matrix is accounted for by 

the volume occupied by the coarsened gas bubbles [22-25]. In view of the low boron content and the fact 

that it occurs in the copper matrix in the form of precipitates, a copper-boron matrix can be considered to 

behave as a pure copper matrix as far as its diffusion behavior is concerned. Hence, in the subsequent 

sections of this paper the vacancy concentration as well as the diffusion coefficient of pure copper has 

been employed for the study of diffusion and growth of helium in copper-boron matrix. 

It has been hypothesized earlier that vacancies originating from the external surface condense 

spontaneously on the surface of the gas bubbles [26-27]. The external surface induces the growth of the 

gas bubbles by serving as a source of vacancies. The driving force for such a spontaneous condensation of 

vacancies is provided by the inherent tendency of the gas trapped inside the bubble to lower its free 

energy through volumetric expansion [13]. In the presence of inert gas bubbles, a vacancy gradient is 

created between the external surface of the specimen and the interior of the matrix. The vacancies migrate 

from the external surface and condense on the surface of the bubbles. A theory for the growth of inert gas 

bubbles through deposition of vacancies on their surface is presented here. The model predicts that the 

rate of growth of the bubbles decreases in a progressive manner as a function of the inverse of the cube of 

its distance from the external surface of the specimen. 

2. Deposition of Vacancies on the Surface of Gas Bubbles  

If two separate gas bubbles are forced into coalescence by impingement of their surfaces, there will be a 

net increase in the volume provided their surfaces areas are conserved [22]. This phenomenon was 
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experimentally demonstrated by Barnes [28-29] in an electron microscope. The temperature gradient 

created by the electron beam provided the driving force. In contrast, there is a complete absence of 

temperature and stress gradient during the post-irradiation annealing. In these conditions, coalescence 

induced by the bubble migration is possible only during recrystallization of the matrix via the movement 

of dislocations and grain boundaries. However, this phenomenon has only a very limited role in the 

overall swelling of the matrix for two reasons: the bubbles greater than a few microns cannot be dragged 

by moving dislocations and grain boundaries and the bubbles themselves, acquired during their migration, 

retard their movements [30]. Hence, growth of stationary gas bubbles is possible only through the 

condensation of vacancies on their surfaces [26-27]. 

Before giving a mathematical formulation of the swelling phenomenon, it is essential to recall the 

characteristic features associated with swelling arising from the presence of gas bubbles filled with inert 

gas. Inert gas induced swelling should be distinguished from the irradiation induced void swelling [31-

32]. Void swelling is a consequence of the proliferation of vacancies under intense irradiation at ambient 

temperatures. Inert gas atoms produced from transmutation of elements present in the matrix are known to 

assist in the nucleation of voids [31]. However, the inert gas atoms have little role in the further accretion 

of vacancies to the nuclei responsible for void swelling [32]. In contrast, the swelling originating from the 

inert gas atoms embedded in a solid is a high temperature phenomenon.  It occurs at temperatures greater 

than 0.5Tm; Tm being the melting point. This kind of swelling is a thermodynamically spontaneous 

process and the dilation of the matrix is fully subsumed by the volume occupied by the inert gas bubbles. 

The swelling driven by the inert gas bubble neither causes plastic deformation nor any change in the 

lattice parameter. Usually, different sections of the same specimen swell at different rates. To compare the 

swelling rates, swelling can be expressed as the net volume occupied by the local bubbles per unit volume 

of the matrix in a particular section. Alternatively, it may be also expressed as the percentage increase in 

the overall volume in that section of the matrix.  

Under the conditions outlined above, the change in volume of a bubble, V , taking place in a small 

interval of time, t , may be expressed as [33]:  





JA

t

V
.     (1) 

In the equation (1), V  and A  are respectively the volume and surface area of a growing bubble,  is the 

atomic volume of the matrix, t time and J the flux of vacancies reaching the surface of bubble from the 

external surface. Equation (1) postulates that, in the absence of temperature and stress gradients, a 

vacancy flux can mediate inert gas induced swelling. In a crystalline matrix, only the free external surface 

can act as a perennial source of vacancies. To a limited extent, the grain boundaries also can serve as a 

source of vacancies. This is specially so for the grain boundaries having access to the external surfaces 

[26]. However, the line defects such as dislocations and twin boundaries would be ineffective in this 

regard [34]. Grain boundary route for acquisition of vacancies will be accessible only to those bubbles 

which are located on the grain boundary itself. Let 
e

VOC  and 
e

VC respectively be the equilibrium 

concentration of thermal vacancies on the external surface and within the matrix. The magnitudes of
e

VOC  

and 
e

VC depend only on the temperature and both of them have fixed and finite values. We expect 
e

VOC to 
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be far greater than
e

VC . However, both are similar in one important respect. These are equilibrium 

quantities and their invariance with time is ensured by the thermodynamics since the vacancy is an 

equilibrium defect. Also, let D  be the self-diffusion coefficient of copper in the copper-boron alloy 

matrix and X  be the distance between the surface of the bubble and the external surface.  Fick’s first law 

for unidirectional linear diffusion is represented as [34]: 

X

C
DJ



 .     (2) 

The term ( XC  / ) is the concentration gradient of the diffusing species. In the present case, growth of 

the bubbles is not driven by the concentration gradient of any atomic species. Here, the vacancy itself is 

the diffusing species.  

The term ( XC  / ) is given as below: 

X

CC

X

C
e

V

e

VO 





.    (3) 

Hence,       
X

CC
DJ

e

V

e

VO  .    (4) 

The negative sign gets eliminated because the sense of the direction of the bubble growth and the gradient 

of vacancies are in the opposite directions. Transposing and combining the equations (1) and (4), we get: 

t
X

CeC
D

A

V V

e

VO 





.   (5) 

During nucleation, formation of a new phase requires the creation of new surface and spherical geometry 

minimizes the surface area in the formation of a nucleus. As shown in the Appendix 1, the surface area of 

a sphere and volume are related as follows: 

21.0

3/2V
A  .     (6) 

By substitution from equation (6) into equation (5), we have: 

t
X

CC
DVV

e

V

e

VO 


 3/221.0 .   (7) 

The growth of the gas bubbles is a diffusion controlled phenomenon [17-18] and the kinetics of the 

bubble growth is governed by the diffusion coefficient mentioned above. Presently, we are interested in 

the behavior of bubbles at a constant temperature in a compositionally homogenous matrix. As a result, 

the parameter D in the equation (7) can be treated as a constant. In order to facilitate the integration, we 

make the following substitution [34]: 
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tX  .     (8) 

   is a constant independent of X  and .t  Substituting for X in the equation (7) from equation (8) and  

integrating, we get: 

tt
CC

DVV
t

e

V

e

VO

V

V

f

o




 


0

2/13/2 ..21.0


   (9) 

Here, 0V   and 
fV  are respectively the volumes of the bubble at the start of annealing ( 0t ) and at the 

end of annealing period ( t ). As discussed above, the terms outside the integral in the right hand side of 

equation (9) are invariant at any fixed temperature and composition. Therefore, integrating the equation 

(9), we get: 

2/13/1

0

3/1 )( KtVV f  .     (10) 

 K is a constant defined as below: 



)(
23.3

e

V

e

VO CCD
K


 .    (11) 

At the start of annealing ( 0t ), when the bubbles are submicroscopic, the net volume occupied by them 

is negligibly small. Hence, we may safely take .0OV Substituting for   from equation (8), we finally 

obtain: 

)/1(])(23.3[ 33 XtCCDV e

V

e

VOf  .   (12) 

Equation (12) gives the average size of the bubbles after annealing at any point ( X ) in the matrix as a 

function of annealing time and its distance from the free surface.  The size of the bubble at different cross 

sections of the specimen varies as the cube of the inverse of its distance from the surface. However, our 

aim is to evaluate the net dilation or the local swelling as a function of the distance from the surface in the 

matrix on account of growth experienced by the gas bubbles after its nucleation. To achieve this, the 

parameter (
fV  ) is multiplied by the total number of the bubbles to obtain the net dilation of the matrix 

caused by formation and growth of the gas bubbles. Let n be the density of the bubbles defined as the 

number of the bubbles per unit volume of the matrix at the end of nucleation stage and the initiation of the 

growth process. n  is invariant with respect to X , the assumption being that the rate of nucleation is 

uniform through  the specimen.  The assumption is justified since the density of nucleation at any point in 

the matrix depends upon the temperature, microstructure and the concentration of helium which are 

unaltered across the entire cross section of the specimen. Hence, the swelling per unit volume of the 

specimen caused by the growth of the gas bubbles as function of its distance ( X ) from the surface can be 

expressed as, 
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)/1()].)(23.3[. 33 XtCCDnVn
V

V e

V

e

VOf 


   (13) 

 Thus, 
V

V
represents the fractional increase in the volume of the matrix originating from the growth of 

gas bubbles. It is used subsequently in the analysis of the data given in the tables 1 and 2. In percentage 

terms, the swelling is given by .100


V

V
 

3. Discussion  

The present paper deals with the growth of helium bubbles during isothermal annealing and here the 

atoms in the host lattice do not undergo any kind of displacement. The possible mechanisms which can 

assist the growth of helium gas bubbles in the temperature range where displacement damage can be 

neglected are (a) gaseous diffusion and absorption in the existing bubbles, (b) random bubble migration 

and coalescence via surface diffusion (c) Oswald ripening due to helium fluxes driven by the differences 

in the thermal equilibrium helium concentrations in the vicinity of small and large bubbles [2]. In the 

absence of vacancy super-saturation in the host matrix, gas bubbles grow via inflow and deposition of 

vacancies from the free surface which envelopes the body of the specimen. In an earlier paper [26], 

experimental evidence regarding the growth and calescence of stationary immobile bubbles through 

vacancy deposition was presented. In this situation, changes in the size of bubbles are governed by the 

following equation [13]: 

)(ln
0

of

f
AA

V

V
NRT 








 .   (14) 

In the equation (14), N is the number of moles of gas within the bubble cavity, 
fV and 

oV are the initial 

and final volumes of the bubble, 
fA and 

oA are the initial and final surface areas of the bubble and  is the 

surface tension of the matrix. The equation shows that the energy for the creation of extra surface in the 

course of bubble growth is provided by an increase in the volume of the gas. In this context, Dayton et al. 

[35] showed that the inert gas release as well as the swelling decreased substantially after irradiation and 

annealing of coated uranium dioxide and mixed uranium-thorium oxide fuel microspheres. These authors 

also reported that if the coating developed cracks and thus exposed the outer surface of the underlying 

matrix, the swelling increased substantially. Thus the surface induced growth of gas bubbles is not 

specific only to helium but to all types of inert gas bubbles which are trapped inside any crystalline 

matrix. The phenomenon of breakaway swelling and the formation of pinholes in helium implanted 

metallic specimen can also be explained with the help of equation (14). Since the gas trapped inside a gas 

bubble will try to lower its free energy through expansion, the bubble growth will continue in an 

unhindered manner till the bubble transforms into a crack and gas escapes into the atmosphere. 

Absorption of radiation induced super-saturated vacancies within the grains and the migration of free 

vacancies from the surface can continue unabated as the energy released by the expansion of the helium 

gas trapped inside the bubble is higher than the energy needed for the surface increase during its growth. 



7 

 

In these circumstances, the bubble growth can continue till the gas escapes due to the formation of crack 

or pinhole. At high burn up, rim effect in metallic uranium as well as oxide fuel is associated with the 

formation of fine grains and highly pressurized gas bubbles in peripheral regions on the fuel pellet [31]. In 

principle, the bubbles in the peripheral regions may also grow by accepting vacancies from free surface. 

This kind of bubble growth followed by their coalescence may lead to the formation of cracks and release 

of fission gases into the plenum space. It is, therefore, suggested that in any model designed to 

predict/estimate inert gas induced swelling, the possibility of bubble growth through the migration and 

deposition of vacancies from the external surface should be carefully examined. 

In an earlier publication, present model was applied to the data on swelling as a function of time and a 

satisfactory agreement between the rate of bubble growth predicted by the theory and the experiments 

was observed [33]. Presently, equation (13) will be applied to dada on the variations in the growth of gas 

bubbles as we traverse from the external surface towards the center of the specimen. The results of Pati 

and Barrand [9] are suitable for the application of present model because of the availability of Figs.1 and 

2, which show longitudinal and transverse sections of an irradiated and annealed copper boron alloy. 

These figures clearly bring out the fact that bubbles near the surface of the specimen experience higher 

growth than the bubbles located deeper inside. There will a time gap between the moment when a 

vacancy leaves the free surface and the time it reaches the bubble. This time will be relatively shorter if 

the distance travelled by the vacancy to reach the bubble is smaller and vice-versa. Unlike Pati and 

Barrand [9], most of the authors ( see for example; Greenwood [23] and Mustelier et al. [36]) have been 

content to display the differences in the rate of bubble sizes in the near surface region and in the sections 

away from the surface by using two different figures. The demonstration of progressive decrease in the 

size of the gas bubbles as we move away from the surface to the deeper section of the specimen in a 

single frame is required for the application of the present model to the experimental results. Dark areas in 

the Figs. 1 and 2 represent the areas occupied by gas bubbles which are bared after sectioning. The model 

for the bubble growth presented here assumes a spherical geometry during the initial stages of their 

growth. A careful examination of the microstructures shown in the Figs. 1 and 2 suggests that bubbles 

indeed have a spherical geometry to start with. The irregular shapes are obtained as a result of the 

coalescence between adjacent bubbles. Barnes [28-29] has shown that the coalescence of the bubbles 

conserves the surface area of the bubbles. Hence, the net area available for vacancy deposition remains 

unchanged even if the bubbles acquire irregular shapes subsequently through coalescence. 

The data were extracted from Figs.1 and 2 using software developed by one of the authors and recorded 

in the Tables 1 and 2 respectively. The area fraction occupied by the gas bubbles is converted into volume 

fraction with the use of the relation
2/3)(AreaV  . The data in the Tables 1 and 2 for volume fraction of 

the bubbles as a function of cube of the reciprocal of distance as measured from the external surface 

( 3/1 X ) are plotted in Figs. 3 and 4 respectively. As expected from the equation (11), there is a steep fall 

in the volume fraction of gas bubbles as we move away from the surface. The most significant feature of 

the Figs. 3 and 4 is that the rate of bubble growth in the near surface region (marked as region 1 in the 

figures) is different from those located farther away from the surface (marked as the region 2). The rate of 

the bubble growth, indicated by the slopes of the curve from the two regions, is faster in the region 2 as 

compared to that in region 1. The interesting and intriguing aspect of the Figs. 3 and 4 is that despite the 

relatively slower rate of growth,  overall  volume of  the  bubbles in the near surface region is higher   
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Fig.1  Microstructure of the longitudional cross 

section of irradiated and annealed cylindrical 

wire Cu/0.085wt% B alloy specimen in as-

polished condition [1]. 

 

             

Fig.2. Microstructure of the transverse cross 

section near the midlength of irradiated and 

annealed cylindrical wire copper-boron alloy 

specimen in as-polished condition [1]. 

 

 

in the sections located deeper inside where the growth rate is higher. The reasons for the differences in the 

growth rates of bubbles in the two regions are discussed below. 

3.1 Growth Rate in Region 1  

As shown in the Appendix 2, the slope of the plot of volume fraction of bubbles ( VV / ) against the 

cube of the reciprocal of the distance from the surface ( 3/1 X ) estimated on the basis of the equation (13) 

is equal to 
101084.4 x  cm3 .To obtain the magnitude of swelling in percentage terms, this should be 

multiplied by 100. This yields a value of 
81084.4  cm3.   Actual values of the slopes in the region 1 for 

both Fig.3 and Fig.4 are equal to
8109 x .  The calculated value is 1.96 times higher than the experimental 

value. In the Appendixes given at the end, various possible sources of error are identified and their 

contribution to total error in the value of slope ( S ) are estimated. It is found that total error introduced by 

the uncertainties in the magnitudes of the parameters associated with S amounts to one hundred percent. 

If we combine it with the difference in calculated and experimental, the overall difference in experimental 

and theoretical values of S sums up to 200%. We feel this type of agreement validates our model.    
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Table 1: Data Analysis for Image of Fig.1  Table 2: Data Analysis for Image of Fig.2 

        (The data is up to 6 significant digits)          (The data is up to 6 significant digits) 

It should also be mentioned here the data on volume occupied by the bubbles used in this paper were 

taken from a single cross section of the specimen. A minimum of five sections should be analyzed to get 

more representative values of the volume of the bubbles. However, the present article does serve to 

delineate the role of the free surface and diffusion of vacancies in the inert gas induced swelling of the 

crystalline solids. 

 

3.2 Growth in the Region 2

Here the growth rates are higher by about two orders of magnitudes. The preferential location of bubbles 

along the grain boundaries in this region (see Fig.2) is a signal for the role of grain boundaries in their 

growth. To consider the growth of the gas bubbles located at the grain boundaries, the equation (13) is 

transformed as below: 

                                          )/1()])(23.3[ 33 XtCCDnV e

V

e

VOgbgb

gb

f   .   (15) 

S. 

No. 
X 1/X3 

Area 

Fraction 

Volume 

Fraction 

(
V

V
) 

1 0.007674 2212930 0.504333 0.358159 

2 0.01 1000000 0.372598 0.227437 

3 0.015 296296 0.357069 0.213367 

4 0.025223 62318.2 0.268039 0.13877 

5 0.04252 13007.9 0.226304 0.107656 

6 0.060258 4570.37 0.138166 0.051357 

7 0.078688 2052.47 0.13162 0.047751 

8 0.097558 1076.99 0.125665 0.044547 

9 0.116365 634.648 0.101336 0.032259 

S. 

No. 
X 1/X3 

Area 

Fraction 

Volume 

Fraction 

(
V

V
) 

1 0.01032 909910 0.708006 0.595738 

2 0.012364 529120 0.691713 0.575293 

3 0.015417 272878 0.675419 0.555086 

4 0.020639 113739 0.658728 0.534637 

5 0.031211 32891.6 0.642037 0.514h446 

6 0.05185 7173.76 0.604211 0.469659 

7 0.071986 2680.75 0.51455 0.369098 

8 0.093884 1208.43 0.305312 0.1687 

9 0.117041 623.722 0.2697 0.140062 

10 0.139442 368.825 0.229033 0.109609 

11 0.160836 240.352 0.168162 0.068959 

12 0.181224 168.017 0.177621 0.074859 

13 0.20136 122.484 0.102149 0.032648 

14 0.221244 92.3387 0.156665 0.06201 

15 0.240625 71.7755 0.11451 0.038749 
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 gb

fV is the net volume of the bubbles per unit volume of the matrix located at grain boundaries at a 

distance of X from the surface,
gbn is the density of bubbles per unit of grain boundary volume,   is the 

average fraction of atoms located at the grain boundaries and 
gbD  is the grain boundary diffusion 

coefficient. When the lattice as well as grain boundaries are taking part in diffusion, the effective 

diffusion coefficient,
effD , is given by, 
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Fig.3 (a): Volume Fraction of bubbles as a 

function of 1/X3 for the first five data given in 

table 1. The data have an error band of 5%. The 

equation for least squares fit line is: 

 y = 9x10-8 x + 0.5226 
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Fig.3 (b): Volume Fraction of bubbles as a 

function of 1/X3 for the last ten data given in table 

1. The data have an error band of 5%. The 

equation for least squares fit line is: 

    y = 6x10-5 x + 0.0739 

 

 

gbeff DDD   )1( .     (16) 

To obtain an estimate of , we make an imaginary transverse section across the specimen surface. Let  

and   be the average grain size  and  the  width  of the  grain boundary.  This imaginary section will be 

intercepted by a grain boundary across its length at an interval of . Hence, we will come across an atom 

located at the grain boundary after a distance of  Further, if a is the lattice parameter, then we have one 

atom at the lattice site after an interval of a. The value of  given by Pati and Barrand [9] is 0.034 cm. 

Therefore,  is given by, 
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                                       5

3

8

10061.1
104.3

106075.3

)/1(

)/1( 





 x
x

xa

a 


    (17)

 

Substituting the value of  in the equation 15, we obtain, 

gbeff DxxDD 55 1006.1)1006.11(   .   (18)
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Fig.4 (a): Volume Fraction of bubbles as a 

function of 1/X3 for the first four data given in 

table 2. The data have an error band of 5%. The 

equation for least squares fit line is: 

y = 9x10-8 x + 0.1532 
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Fig.4 (b): Volume Fraction of bubbles as a 

function of 1/X3 for the last five data given in 

table 2. The data have an error band of 5%. The 

equation for least squares fit line is: 

y = 6x10-6 x + 0.0326. 

 

 

Since the value of  is small, its influence on the role of lattice diffusion as it relates to the bubble growth 

is negligible. However, it reduces the net contribution of grain boundaries to the overall growth of the gas 

bubbles cross-sectional area available for the bubble growth by a factor of 105.  As we do not have any 

specific information regarding the density of nucleation along the grain boundaries, it is not possible to 

make a quantitative assessment of the swelling induced by the growth of bubbles located in the grain 

boundaries.  However, the higher rate of growth of bubbles in the second region can be attributed to the 

fact that grain boundary diffusion coefficient is 104 times greater than the lattice diffusion coefficient. 

Despite higher diffusion rates, the smaller swelling in the second region is due to the reduction in the 

cross sectional area available for the bubble growth.  
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Summary  

A theory is presented to explain the gradation observed in the growth of helium gas bubbles in an 

irradiated and annealed copper-boron alloy as we traverse from the surface to the interiors of the 

specimen. The growth in the gas bubbles is caused by the spontaneous deposition of vacancies on their 

surface. The external surface constitutes a perennial source of vacancies and a vacancy gradient is created 

between the open external surface and the bubbles. The kinetics of bubble growth is controlled by the rate 

of diffusion of vacancies in the matrix. The theory satisfactorily explains the microstructural evidence on 

the gradual decrease in the growth of bubbles from surface to the interiors of the irradiated and annealed 

copper–boron alloy. 
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APPENDIX-1  

The relation between the surface area and volume of a sphere can be obtained as follows. As a function of 

radius of the sphere, the two quantities are: 

24 rA   and    3

3
4 rV  . 

Therefore, we obtain,      3/23
2

4
3)4( VA


 . 

Or      3
2

837.4 VA       (A1) 

APPENDIX-2 

Calculation of slope of the plot of volume fraction of bubbles as a function of 3/1 X  

The equation (13) forms the basis of the plots of volume V against the cube of reciprocal of distance from 

the surface (1/X3). The equation is,  

)/1()])(23.3[ 33 XtCCDnV e

V

e

VOf     (A2) 

Hence, the slope S of the plot of 
fV versus 3/1 X  is given by, 

3])((23.3[ tCCDnS e

V

e

VO      (A3) 

D is the self-diffusion coefficient of copper, representing diffusion of copper in its own lattice via 

vacancy mechanism. Pati and Barrand [9] used spectrographically pure copper and presence of 0.085 wt% 

of boron will not affect self-diffusion property of the matrix in any significant manner. Hence, the self-

diffusion coefficient of copper measured by standard radioactive tracer technique can be used to obtain 
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the value of D . Reliable data on self-diffusion coefficient [37] and vacancy formation energy [38] in 

copper are available. The values of these parameters at the annealing temperature 1263 K are given 

below:  

1. Self-diffusion Coefficient D 

At 1263 K,   





1263987.1
4700020.0

x
ExpD cm2/sec. 

         = 
91047.1 x  cm2/sec. 

2. Vacancy concentration per unit volume 
e

VC  

   
e

VC  = (Probability of vacancy formation at any lattice site) x (No. of copper atoms per unit volume) 

          = (Vacancy concentration per unit volume) x (No. of copper atoms per unit volume) 

Activation energy for vacancy formation in copper is 23.07 kCal/g.mol. 

Hence,  
  














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
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
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
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Coppere

V
htAtomicWeig

DensitymberAvogadroNu

x

x
ExpC

1263987.1

1007.23 3
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


























54.63

96.810023.6

1263987.1

1007.23 233 x

x

x
Exp  

      )104932.8()100177.1( 224 xxx   

      
1910644.8 x  

3.  Vacancy concentration at the surface 
e

VOC  

To our knowledge, information regarding the magnitude of 
e

VOC  the vacancy concentration on the surface 

is not available in literature. We have tried to obtain the value of this parameter from the data on surface 

diffusion in copper reported by Bonzel and Gjostein [39]. As discussed above, diffusion parameters for 

pure copper are being used in present calculation. According to these authors [36], surface diffusion 

coefficient of copper ( sD ), in the temperature range 773-1233 K, is given by the following equation: 

)
/6.80

exp(26.0
RT

molkJ
Ds     (A4) 

Beyond this temperature range there is a steep rise in activation energy, possibly arising from vapor phase 

transport mechanism. We treat the activation energy in the equation (A4) as a composite quantity 

representing vacancy formation and migration energies for surface diffusion in pure copper to arrive at 
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the value of
e

VOC . This is achieved by fixing the ratio of vacancy migration and formation energies as it 

relates to surface diffusion in copper. The values of the ratio of vacancy formation to vacancy migration 

energies in metallic systems [38] are given below:  

(i) FCC and HCP: 1.0 - 1.8  

(ii) BCC transition metals: 2.1 -4.9  

(iii) BCC alkali metals: 8.9 - 12.6  

The data given above suggest that the ratio of vacancy formation to migration energy rises rapidly as we 

move from closed packed lattices to open structures. We surmise that the vacancy formation energy at the 

free surface in copper can be taken to be approximately 85% of activation energy for surface self-

diffusion, the rest being for the migration of the vacancy. Hence, the magnitude of 
e

VOC may be expressed 

as, 

    
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1018.4/6.8085.0 3
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       )104932.8()104576.1( 223 xxx  . 

       
2010238.1 x  

4.  Number of helium gas bubbles per unit volume n  

Pati and Barrand [9] have not provided any estimate of the parameter n , the number of helium gas 

bubbles in the swelled volume of copper matrix. As shown below, the data on volumetric swelling given 

in their paper can be used to get an estimate of this parameter. 

The expression used for calculating the value of n is, 

  h
Dd

h
DD

n

).
4

(
23

4

4
2

1

3

2

1

2

2





















 

     (A5) 

where, D1 and D2 are sample diameters before and after swelling, h is the length of the swelled region and 

d is the average diameter of a single bubble. 

Original diameter of the specimen = cm5.0  

Average of the increase in diameter at the two end faces of the specimen = cm055.0  

Average length of swelled region at the ends of the sample = 21015 x cm 
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Average diameter of the bubbles = cmx 3105.3   

Swelling per unit volume = (Net swelling/original volume of the swelled region) 

  
32

322

105.1]2/5.0[[(

105.1])2/5.0()2/555.0[(





xx

xx




 

            n  =   Swelling per unit volume / Volume of a single bubble 

  
 

  ]105.1])2/5.0[(]10)2/5.3[(34

105.1])2/5.0(2555.0[
3233

322






xxxx

xx




 

  
71023.1 x  

 

5. The magnitude of other terms in the equation (A2) 

5.1  Atomic volume of copper   

 (volume of a unit cell of copper/ number of atoms per unit cell of copper) 

      4106149.3
38 x  

    231018.1  x  

5.2 Period of annealing 

It is the time of bubble growth as used by Pati and Barrand [9], i.e., .sec1018.5 5x  

Calculation of the value of slope S 

Values of parameters derived in the sections 1-5 above can be used to calculate the value of slope, S , 

using equation (A2) as below: 

3].)(23.3[ tCCDnS e

V

e

VO   

   
3523224397 ]1018.51018.1104932.8)100177.11046.1(1047.123.3[1029.1 xxxxxxxxxx    

    
101084.4  x  

APPENDIX-3. 

3.1 Evaluation of error in the estimation of n  

Equation (A2) used for calculating the value of n is, 
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Accordingly the magnitude of error in n  can be estimated from using standard error propagation 

procedure as follows- 
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  (A6) 

We assume that the error in the values of various parameters given by Pati and Barrand [9] and used in 

estimation of n does not exceed 10%. Thus, we get: 

       2222
1.091.01.041.04 

n

n
 

     181.0  

     425.0  

So, the error in the value of n calculated above is likely to be 42.5%. 

3.2   The confidence level of estimated value of the parameter S  is established by use of the the error 

propagation formalism for as follows- 
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The possible errors for each of the parameters in the above expression are given below. 

1. The estimation of error in n has already been carried out using equation (A6). 

2. The maximum possible error in magnitudes of self-diffusion coefficient, D, and vacancy 

concentration as used here is assumed to be 10% . 

3. We surmise that the possible error in the vacancy concentration at the surface may be 50%. 

4. The error in the value of Ω is negligible and hence is ignored. 
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5. We surmise that the maximum possible error in measurement of annealing time t could not 

exceed 5 minutes over a period of 144 hours. This gives the error value in t as 0.06% and it can 

also be ignored. 

The estimated error in the value of slope is, therefore, given as: 

 2222 1035031035.42 xxx
S

S



 

      %53.99 . %.100  




