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Abstract 

Using a combination of analytical theory and newly developed numerical algorithms, we analyze the 

most pertinent conformational characteristics of three paradigmatic types of polymers in disordered 

environments: (i) flexible polymers in quenched, self-similar disorder as represented by a self-avoiding 

random walk on a critical percolation cluster, (ii) semiflexible polymers in quenched, steric disorder as 

represented by an equilibrium hard-disk fluid and (iii) semiflexible polymers subject to the random 

energy landscape that emerges from a surrounding network of similar semiflexible polymers. 

Keywords: Polymers in disorder, self-avoiding walks, percolation clusters, exact enumerations, 

semiflexible polymers in crowded environments, hard-disk fluid, chain-growth computer simulations, 

tube model of semiflexible polymers 

 

1 Introduction 

The world of biopolymers is crowded and disordered. From actin filaments and microtubules in the 

cytoskeleton to DNA strands in the nucleus—their environments are highly inhomogeneous, often 

across many length scales [1]. To the macroscopic observer, these inhomogeneities make themselves 

felt by modulating the material response to external stresses, whereas to a polymer embedded within, 

inhomogeneities chiefly appear as a constraint on its conformational fluctuations. Conversely, if the 

impact of environmental disorder on single-polymer statistics is well understood, the diffusive shape 

fluctuations of disorder-embedded polymers can be used as a local probe of the material microstructure, 

complementing the coarse-grained view afforded by macroscopic response measurements. 

Understanding the impact of disorder on the polymers’ statistics and dynamics is therefore an important 

problem in modern polymer physics. We approach the topic from complementary angles by focusing on 

the two most common types of biopolymers, flexible polymers such as tropocollagen [2] and semiflexible 

polymers such as F-actin or microtubules [3]. 

Flexible polymers offer little to no mechanical resistance to external forces. Every possible 

conformation is thus equally likely in equilibrium, constrained only by the fact that polymers are unable 

to self-intersect. This endows flexible polymers with the equilibrium properties of a “self-avoiding random 

walk”  (SAW)  such  as  a  mean  square  end-to-end  distance  〈𝑹2〉  that  scales  slightly  superdiffusively  in 
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Figure 1: (a) Self-avoiding walks on a critical percolation cluster achieve a larger overall extension on average 

than SAWs in free space. Here shown is a typical conformation of a 200-step SAW on a 2𝑑 cluster. The coloring 

reflects the shortest-path distance of cluster sites to the origin (center). (b) Semiflexible polymers exposed to a 
quenched hard-disk fluid background (right) bend more strongly than their unconstrained counterparts in free 
space (left). The resulting conformational statistics can be captured using an effective WLC model with a 
renormalized persistence length. (c) Network effects on a test polymer in semidilute solution can be described 

by a confinement tube. Its radius 𝑅 varies along the polymer contour with a characteristic correlation length 𝐿𝑒 

representing the distance between mutual collisions with neighboring background chains.  

 

the number of monomers 𝑁 and an algebraic correction to the partition sum 𝑍, 

〈𝑹2〉 ~ 𝑁2𝜈, 𝜈 > 1/2,     and     𝑍 ~ 𝜇𝑁𝑁𝛾−1, (1) 

where 𝜈 and 𝛾 are universal critical exponents. For a flexible polymer living on the random fractal 

landscape of a percolation cluster, as illustrated in Figure 1, it had long been conjectured (see [4] and 

references therein) that the disorder averaged analogues of these quantities obey similar scaling 

relations, albeit with different exponents, 

〈𝑹2〉̅̅ ̅̅ ̅̅  ~ 𝑁2𝜈̅,     and     𝑍̅ ~ 𝜇̅𝑁𝑁𝛾̅−1. (2) 

Extensive numerical work on the subject [4, 5, 6] has provided convincing evidence for the power-

law growth of 〈𝑹2〉̅̅ ̅̅ ̅̅ , but not for the expected scaling behavior of 𝑍̅. We have developed a new exact 

enumeration algorithm that is vastly more efficient than conventional numerical tools [7, 8]. Using our 

new algorithm, we have determined the scaling exponent 𝜈̅ to unprecedented precision and could 

furthermore show that 𝑍̅ obeys a different scaling law than hitherto assumed, see sections 2 and 3. 

In contrast to flexible polymers, semiflexible polymers possess a finite internal bending rigidity 𝜅 that 

allows them to withstand external forces. Their energetic ground state is that of a rigid rod and deviations 

from the ground state are governed by the Wormlike Chain (WLC) Hamiltonian, which penalizes 

backbone curvature |𝜕𝑠
2𝒓| (where 𝒓(𝑠) denotes the continuous, arclength-parametrized polymer 

contour),  

ℋ =
𝜅

2
∫ |𝜕𝑠

2𝒓(𝑠)|2d𝑠
𝐿

0

. (3) 

It follows from Eq. (3) that the tangents 𝒕(𝑠) ≡ 𝜕𝑠𝒓(𝑠) to the contour decorrelate exponentially in thermal 

equilibrium,  

〈𝒕(𝑠) ⋅ 𝒕(0)〉 = exp(−𝑠/ℓ𝑝). (4) 
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The persistence length ℓ𝑝 ordinarily depends on the bending rigidity 𝜅, the temperature 𝑇, and the 

dimensionality 𝑑 of the embedding space, 

ℓ𝑝 =
2

𝑑 − 1

𝜅

𝑘B𝑇
, (5) 

but little is known about how ℓ𝑝 changes or whether a persistence length in the strict sense defined via 

Eq. (4) even exists in the presence of disorder. Using a newly developed growth algorithm, we 

numerically simulated semiflexible polymers embedded in the background of a quenched hard-disk fluid 

that serves as a paradigmatic model for molecular crowding within the cytoskeleton. We showed that 

the disorder averaged tangent-tangent correlation function still decays exponentially, albeit with a 

renormalized persistence length ℓ𝑝
∗  [9]. We furthermore found that ℓ𝑝

∗  relates to the thermal persistence 

length ℓ𝑝 via an auxiliary quantity that depends only on properties of the environmental disorder and 

thus defines a novel quantitative measure of molecular crowding, see section 4. 

Semiflexible polymer networks such as the cytoskeletal actin cortex constitute another important 

class of environmental disorder. Due to its filamentous structure, this type of environment allows for 

virtually unimpeded motion along the polymer backbone but strongly constrains lateral motion. On 

intermediate time scales, the transverse deviations 𝒓⊥ of a single test polymer from its mean backbone 

axis thus trace out a “tube” that can be approximated analytically by adding to the WLC Hamiltonian a 

harmonic confinement term, 

ℋ = ∫ [
𝜅

2
|𝜕𝑠

2𝒓(𝑠)|2 +
𝜑

2
|𝒓⊥(𝑠)|2]

𝐿

0

d𝑠. (6) 

Traditionally, 𝜑 has been considered constant along the polymer backbone, despite the strong 

inhomogeneities that can be observed in real polymer networks [10]. To address the statistics of the 

tube strength 𝜑, we developed a systematic theory [11] which, based on a binary collision 

approximation, describes fluctuations of 𝜑 in an entangled polymer solution on the scale of individual 

tube collisions [12]. This approach allows us to determine the local tube radius 𝑅(𝑠), defined through 

𝑅2(𝑠) ≡
1

2
〈𝒓⊥

2 (𝑠)〉, (7) 

and its statistical distribution function 𝑃(𝑅). The shape of 𝑃(𝑅), which is found to be given by a 

universal, non-Gaussian scaling function with a stretched tail, compares well with experimental data for 

F-actin solution of various concentrations. 

The remaining article is organized as follows: Section 2 outlines a new algorithm for exact 

enumeration of SAWs on critical percolation clusters. Results for their asymptotic scaling behavior 

obtained by this method are subsequently discussed in section 3. We then turn to semiflexible polymers 

modeled by the WLC: Section 4 presents numerical and analytical findings concerning the effect of 

quenched disorder in the form of a hard-disk fluid on the chain’s persistence length and tangent-tangent 

correlation function, while section 5 discusses the situation of a polymer being part of a random network 

via the “tube model”. Our main findings and conclusions are summarized in section 6. 
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2 Scale-free enumeration of SAWs on percolation clusters 

There are two numerical strategies to treat SAWs on a percolation cluster, namely exact enumeration 

and chain-growth Monte Carlo sampling. Among the latter class of methods, the pruned-enriched 

Rosenbluth algorithm (PERM) [13] is best suited to the problem, allowing for a few hundred steps with 

manageable effort [6]. For longer chains, however, its estimates become unreliable as it struggles to 

properly sample the clusters’ rugged landscapes [14]. Exact enumeration is usually restricted to much 

shorter chains still, about forty or fifty steps depending on the dimension [5, 15], due to exponential 

increase of conformations and thus computation time. As we have recently shown [7], however, this can 

be overcome by a suitable factorization of the problem that exploits an intrinsic hierarchical structure. 

Since critical percolation clusters are finitely-ramified fractals, see [16], regions (“cells”) of any size can 

be disconnected by removing a small number of sites (or bonds). This can be utilized in the following 

way: We partition the cluster into a hierarchy of nested cells, each having a small number of connections 

to its “parent” and “children”; see Figure 2. Rather than generating all SAW conformations on the whole 

cluster, we then successively construct the segments through each cell in turn, starting at the bottom of 

the hierarchy. The crux is that when we generate the segments through a cell, its children can be treated 

as single sites. The number of segment conformations and the average end-to-end distances are then 

obtained by multiplying each path with the number of different possibilities to traverse the child. This 

factorizes the number of required operations, allowing thus, if repeatedly applied over all length scales, 

to reduce the exponential complexity of exact enumeration to polynomial. 

Interestingly, the exponent characterizing the complexity of the enumeration is practically identical 

in 2𝑑 and 3𝑑, with a value of roughly 2.4. This can be seen in Figure 3, where the average runtime for 

the scale-free enumeration (SFE) procedure is plotted as a function of the number of steps 𝑁 as well 

as the time needed for partitioning the cluster. The gain in efficiency implied by this reduction to 

polynomial complexity is not easily grasped: Enumerating all conformations of a 104-step SAW (typically 

about 101550 on a 2𝑑 cluster) would take over 101500 ages of the universe using the standard enumeration 

method – our SFE procedure does it in about twenty minutes. However, this is only possible if the cluster 

is properly partitioned into a hierarchy that reflects its connectivity, which poses a major challenge. Note 

that there is no unique solution to this; a poor partitioning will still work in principle but (dramatically) 

inflate time and memory required for the enumeration. We tackled the problem via an amalgamation 

algorithm, where small pieces of the cluster are repeatedly fused to form larger ones in such a way that 

the resulting number of external connections is kept low. A more detailed description of this may be 

found elsewhere [17]. 

While the basic ideas underlying the SFE method are relatively simple, its implementation is rather 

complex and prone to errors. To ensure that it operates correctly, we always verify the results for the 

initial thirty steps using the standard method. In addition, we compared results for systems of medium 

size against those generated by PERM with very high statistics [14]. Finally, the non-uniqueness of the 

partitioning provides a way to check the method’s correctness by comparing results obtained with 

different hierarchies. This test was successfully carried out for a sample of several thousand of the 

largest systems. 

 



 
 

© 2015, N. Fricke et al.  5 
diffusion-fundamentals.org 23 (2015) 7, pp 1–12 

 

Figure 2: Partitioning of a critical percolation cluster into nested cells and corresponding tree hierarchy. The 
black spot within the gray cell A marks the starting position of the walks. Reproduced from Ref. [7]. 

 

 

Figure 3: Average runtime (in seconds) for partitioning the clusters (red) and enumeration of the SAWs (blue) in 
two and three dimensions (squares and circles, respectively) on a log-log scale. Each data point was obtained 
from a sample of 103 clusters. The dashed lines correspond to least-squares power-law fits. 

 

The scale-free enumeration method can be extended to accommodate nearest-neighbor 

interactions and can hence also be applied to investigate self-interacting self-avoiding walks (SASAWs). 

Here the exact nature of the results is particularly valuable, as it gives access to the full temperature 

spectrum. The results of these investigations shall be discussed in a forthcoming publication [18]. 

 

3 Asymptotic scaling behavior of flexible polymers in disorder 

To uncover the dependence of the quenched average of the end-to-end distance and the number of 

conformations on the number of steps, we enumerated SAWs of different length on independent random 

disorder samples, each consisting of at least 5 × 104 clusters. In 3𝑑 we went up to a maximum of 𝑁 = 

12800 steps, while we have so far only analyzed walks of up to 𝑁 = 1000 steps in 2𝑑. The results for 

the 3𝑑 case are plotted in Figure 4 on a double-logarithmic scale, where the values were scaled by 

𝑁1.33 ≈ 𝑁2𝜈̅ for the sake of visibility. The plot also shows results obtained using the cluster backbones, 

those structures which remain if all singly-connected dangling ends are removed. As can be seen, the 

slope on the backbones agrees asymptotically with that on full clusters, resolving a longstanding 

controversy [19, 20, 6, 7]. Initially, however, it is markedly larger as it takes about 𝑁 = 800 steps for the 

asymptotic behavior to manifest itself. Using 𝑁 = 800 as lower cutoff for a simple least-squares fit, we 
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Figure 4: Mean squared end-to-end distance vs. number of steps for SAWs on incipient critical clusters (red) 
and backbones (green) on a log-log scale. The lines show the results from different least-square fits over the 

intervals 𝑁 = 800–12800 (left) and 𝑁 = 13–84 (right). The factor 𝑁−1.33 (≈ 𝑁−2𝜈) serves to magnify the 

differences. Reproduced from Ref. [8]. 

 

obtained the estimate 𝜈̅3𝑑 = 0.6433(4). The fact that this value is significantly smaller than estimates 

from previous analyses of smaller systems (0.662(6) [5] and 0.667(3) [6], both for backbones) is 

consistent with the slow manifestation of the asymptotics. Indeed, fits over the initial ranges (right plot 

of Figure 4) yielded quite similar results, 0.6646(2) on the backbones and 0.6547(2) on full incipient 

clusters. In 2𝑑 our estimate is also smaller than those previously reported: 𝜈̅2𝑑 = 0.775(2). However, in 

view of our findings for the 3𝑑 case, 103 steps may still not be sufficient for capturing the true asymptotic 

behavior. A more extensive 2𝑑 study is currently ongoing. 

Sampling the quenched average of the number of conformations 𝑍̅ turned out to be difficult, as the 

underlying distribution has large deviations. In fact, it resembles a lognormal distribution, implying that 

simple random sampling of percolation clusters will underestimate the average for long chains. A better 

approach is therefore to focus instead on the average entropy ln 𝑍̅̅ ̅̅ ̅. Here the distribution is 

approximately Gaussian, and we found that its variance increases linearly: 𝜎ln 𝑍
2 ∼ 𝐴 𝑁 with 𝐴 =

 0.1667(3). 𝑍̅ can then be approximately obtained via 

𝑍̅ ≈ 𝑒ln 𝑍̅̅ ̅̅ ̅ +𝜎ln 𝑍
2 /2 = 𝑒ln 𝑍̅̅ ̅̅ ̅ +𝐴𝑁/2 ≡ 𝑍logn

̅̅ ̅̅ ̅̅ ̅, (8) 

when we assume the (log)normal distribution. In Figure 5, the average entropy per monomer on 3𝑑 

clusters is plotted against the number of steps, besides the logarithm of 𝑍logn
̅̅ ̅̅ ̅̅ ̅ and the naively estimated 

average. The inset of the plots shows least-squares fits from two different scaling assumptions: 

ln 𝑍̅̅ ̅̅ ̅ /𝑁 = ln 𝑎/𝑁 + ln 𝜇0 + (𝛾 − 1) ln 𝑁/𝑁 (9) 

and 

ln 𝑍̅̅ ̅̅ ̅ /𝑁 = ln 𝑎/𝑁 + ln 𝜇0(1 + 𝑏𝑁−𝜁). (10) 

As can be seen in the right plot of Figure 5, Eq. (9) (dotted curve), which assumes a scaling law like 

the right-hand side of Eq. (2) for ln 𝑍̅̅ ̅̅ ̅, does not at all fit the data. By contrast, Eq. (10) (solid curve) fits 

perfectly for 𝑏 = 1.3(3), 𝜁 = 0.48(3), and ln 𝜇0 = 0.2715(3). Assuming Eq. (8), this then yields: 

𝑍̅ ∼ 𝜇̅𝑁(1+𝑏/𝑁𝜁),     𝜇̅ = 𝑒ln 𝜇0+𝐴/2 = 1.4260(6). (11) 
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Figure 5: (left) Mean entropy (red triangles), logarithm of the average number of conformations (green squares), 

and log-normal approximation (blue diamonds) vs. 𝑁 on a log-linear scale. The estimates for ln 𝑍̅̅ ̅̅ ̅ are biased for 

𝑁 > 200 due to large deviations. (right) Fits of ln 𝑍̅̅ ̅̅ ̅ using Eq. (9) (dotted) and Eq. (10) (continuous), respectively. 

Reproduced from Ref. [8]. 

 

For the 2𝑑 case, our preliminary analysis points to a similar behavior. These findings are very 

unexpected and still waiting to be explained by theory. We suspect that the factor 𝜇̅𝑏/𝑁𝜁
 is owed to the 

inhomogeneous spatial distribution of cluster regions that are entropically favorable, but the issue is still 

being investigated. 

 

4 Semiflexible polymers in a quenched hard-disk fluid 

We now turn to the conformational statistics of a grafted semiflexible polymer embedded in a quenched 

hard-disk fluid, which can be understood as a toy model for a biopolymer in the crowded cytoplasm of 

a cell. Every background realization adds to the WLC Hamiltonian (3) a potential energy term, 

ℋ = ∫ [
𝜅

2
|𝜕𝑠

2𝒓(𝑠)|2 + 𝑉(𝒓(𝑠))]
𝐿

0

d𝑠,    𝑉(𝒓) = ∑ {
0      |𝑹𝑖 − 𝒓| > 𝐷/2
∞             otherwise,

# disks

𝑖=1

 (12) 

where 𝐷 denotes the disk diameter and 𝑹𝑖 the respective disk positions. Due to the extreme strength 

and density of environmental interactions (the disorder filling fraction ranges from ≈ 40 % to ≈ 70 %), 

this system is not amenable to standard Monte Carlo simulation techniques. However, it can be analyzed 

efficiently using a growth algorithm [21, 22, 23] that generates thermal equilibrium ensembles of 

semiflexible polymers by growing them outwards from their point of attachment as follows: (i) A large 

number 𝑍 of growth seeds are placed at the point of attachment 𝒓(0) and (ii) every growth seed is 

extended by one monomer pointing in a random direction. This generates a population of 𝑍 trial dimers, 

each of which is (iii) either deleted or replicated probabilistically such that the total population remains 

approximately constant and the average multiplicity of each configuration corresponds to its Boltzmann 

factor. Steps (ii) and (iii) are performed repeatedly until the polymers have reached the desired length 

𝐿. We analyze the resulting equilibrium ensembles in terms of their length-averaged tangent-tangent 

correlation function 

𝐶(𝑠) =
1

𝐿 − 𝑠
∫ 〈𝒕(𝑠0 + 𝑠) ⋅ 𝒕(𝑠0)〉̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝐿−𝑠

0

d𝑠0 (13) 
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Figure 6: The numerically determined tangent correlations decay exponentially in the limit ℓ𝑝/𝐷 → ∞ (here 

shown for ℓ𝑝/𝐷 = 2, 3, 4, 6, 8, 10 and a background filling fraction of 70 %), and decay more quickly for higher 

disorder filling fractions 𝜙. The relative deviations of our exponential fits to the data are shown in the lower panel. 

Above ℓ𝑝 = 6𝐷, these deviations nowhere exceed ≈ 3 %. Reproduced from Ref. [9]. 

 

 

Figure 7: Left: Renormalized persistence length ℓ𝑝
∗
 as function of the hard-disk fluid area filling fraction 𝜙. Right: 

Disorder persistence length ℓ𝑝
𝐷 as determined via Eq. (18). Reproduced from Ref. [9]. 

 

and in terms of their radial end-to-end distribution function 

𝒫(𝑟) = 2𝜋𝑟〈𝛿(|𝒓(𝐿) − 𝒓(0)| − 𝑟)〉̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅, (14) 

where ⋯̅ again denotes the quenched disorder average. 

We find that, for sufficiently stiff polymers (ℓ𝑝 ≳ 0.6𝐿), tangent correlations decay exponentially but 

with a renormalized persistence length ℓ𝑝
∗  that is significantly smaller than the thermal persistence length 

ℓ𝑝 in free space (5), see Figures 6 and 7 [9]. 

A more sensitive observable is the radial end-to-end distribution 𝒫(𝑟), which highlights local 

variations in the background field and thus picks up small-wavelength modulations that reflect the 

distribution of free volume within the surrounding hard-disk fluid. When multiplied by the “void space 

distribution function”, a close cousin of the radial distribution function known from liquid-state theory, 

𝑔void(𝑟) ∝
1

𝑟
∫ d3𝒓′ 𝛿(|𝒓′| − 𝑟)𝑒−𝛽𝑉(𝟎)𝑒−𝛽𝑉(𝒓′)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

, (15) 

the WLC radial distribution function 𝒫(𝑟) evaluated for the renormalized persistence length ℓ𝑝
∗  is in 

good agreement with our numerical data, see Figure 8 [9]. 



 
 

© 2015, N. Fricke et al.  9 
diffusion-fundamentals.org 23 (2015) 7, pp 1–12 

 

Figure 8: The renormalized persistence length ℓ𝑝
∗  can approximately account for the disorder-modulated radial 

distribution function 𝒫(𝑟) (here shown for ℓ𝑝 = 2𝐷 (red), ℓ𝑝 = 6𝐷 (orange), ℓ𝑝 = 8𝐷 (green), ℓ𝑝 = 10𝐷 

(blue)), if the renormalized WLC result is multiplied by the void space distribution function 𝑔void. Reproduced 

from Ref. [9]. 

 

Interestingly, the renormalized persistence lengths ℓ𝑝
∗  observed for different values of the thermal 

persistence length ℓ𝑝 collapse onto a single master curve ℓ𝑝
𝐷 under the following transformation, 

1

ℓ𝑝
∗ =

1

ℓ𝑝
+

1

ℓ𝑝
𝐷 , (16) 

where the “disorder persistence length” ℓ𝑝
𝐷 depends only on the disorder filling fraction and thus provides 

a novel quantitative measure of molecular crowding. 

 

5 Tube width statistics 

As an alternative approach to the problem of the statistical conformation of a biopolymer in the crowded 

environment of the cytoplasm, we consider the tube model for semiflexible polymers [12]. In contrast to 

the above, the disorder background is here not externally prescribed as a quenched field but instead 

emerges self-consistently from the interaction of the test polymer with identical surrounding polymers in 

a polymer solution. Furthermore, it is not a consequence of volume exclusion but of the thermal 

fluctuations of the chains (that can be imagined as infinitely thin lines) and the topological restriction that 

they cannot cross each other. 

We tackle the topological many-body problem of the polymer solution by a binary collision approach 

designed for purely steric interactions. The free energy ℱ±(𝒉) of confinement due to the uncrossability 

of the chains is associated to each pair collision and locally identified with the mean harmonic tube 

potential introduced in Eq. (6). Here, 𝒉 denotes the displacement of the test polymer’s preferred contour, 

which is approximated by a straight line, and the subscript ± refers to the entanglement topology, 

specifying whether the colliding polymers can be continuously transformed into ground states without 

intersection or not. This allows for a self-consistent determination of the tube strength 

𝜑± = 𝜕ℎ
2ℱ±(𝒉)|ℎ=0 (17) 

as a function of the actual network configuration, which is characterized through the distance of the 

preferred contours and the entanglement topology of the two colliding polymers. Within the binary 

collision  scheme,  we  neglect  correlations  of  the  collisions  along  the  chain  and  approximate  the  local 
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Figure 9: Tube size distribution obtained from the binary collision approximation (solid line), Eq. (18), compared 
to hybrid Monte Carlo / Brownian dynamics simulations (symbols) by Ramanathan and Morse [24] for a 

concentration range (𝜌 is the polymer length per volume) comparable to that realized in typical experimental 

systems. In the simulations, the tube size is measured after a characteristic time interval at which the growth of 
the polymers’ transverse MSD slows down. 

 

entanglement segment by a homogeneous cylinder with its length given by the characteristic distance 

between collisions along a chain, the so-called entanglement length [11]. Within this segment fluid 

approach, which generalizes the conventional tube model [12], the ensemble of possible network 

configurations gives rise to a distribution 𝑃(𝜑) of the local tube strength, which we translate into the 

tube size distribution 𝑃(𝑟). It can be computed within the outlined analytical approximation as 

𝑃(𝑟) = 𝑐 exp(−6.76𝑟–8/3)𝑟–6.76×8/3–1, (18) 

where 𝑐 is a normalization constant and 𝑟 denotes the tube radius scaled by its mean 〈𝑟〉. Our approach 

thus predicts a universal shape of 𝑃(𝑟) that does not depend on the polymer concentration. This 

property and the shape of 𝑃(𝑟), characterized by a positive skewness and a broad tail at large 𝑟, was 

found to be in excellent agreement with experimental data gained from the F-actin solutions, as shown 

in Ref. [10]. In Figure 9, we test (18) against tube size distributions obtained from hybrid Monte Carlo / 

Brownian dynamics simulations proposed by Ramanathan and Morse [24] to simulate networks of 

entangled wormlike chains that have zero thickness but cannot cross each other. In the underlying 

algorithm, trial moves of the bead-stick polymers are computed from a numerically integrated Langevin 

equation. It was shown in Ref. [24], how the increase of the mean square deviation (MSD) of the 

transverse polymer fluctuations slows down after a characteristic time interval, indicating that the 

average polymer in the simulation has explored its whole tube. When measured at this so-called 

entanglement time, 𝑃(𝑟) is indeed well described by the binary collision approximation of Eq. (18). 

 

6 Summary and conclusions 

The self-avoiding random walk on a fractal percolation cluster serves as a paradigmatic model system 

for flexible polymers subject to scale-free disorder. Using a newly developed exact enumeration 

algorithm, we have determined its mean square end-to-end extension to unprecedented precision and 

showed that its partition sum is subject to a different scaling law than hitherto assumed. 

Employing an efficient stochastic growth algorithm, we simulated semiflexible polymers exposed to 

statistically isotropic, quenched steric disorder and found them to exhibit effective WLC statistics, but 

with a renormalized persistence length. We empirically discovered a simple relation between this 

renormalized persistence length and the thermal persistence length, which defines a novel quantitative 
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measure of molecular crowding and allows us to use semiflexible polymers as a local probe of material 

microstructure. 

We furthermore generalized the classical tube model for semiflexible polymers to a “segment fluid 

model” that resolves local tube width fluctuations. Based on this model, we were able to derive a 

universal distribution of tube radii that reflects the intrinsically disordered nature of semiflexible polymer 

networks and is in good agreement with experimental data. 
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