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Abstract 

A central part of soft matter physics is the investigation of effects in an active environment. These 

systems are driven out of equilibrium by a constant energy consumption. In biological systems, for 

instance, energy is consumed in the dynamic polymerization process of cytoskeletal filaments or by 

motor-filament interactions. These active processes convert chemical energy into mechanical work and 

impede a trapping of cellular structures in thermodynamically frozen states. Thus, active soft matter is 

crucial for biological systems to fulfill a broad range of tasks. Inherent physical principles relying on 

entropy maximizing arguments, however, cannot be easily switched off even in active systems. Cells 

might even employ these principles to accomplish certain tasks without the need to arrange elaborate, 

energy dissipating structures. Within the presented studies we demonstrate possibilities how biological 

relevant forces can be generated in the absence of any active accessory proteins. The presented studies 

are based on the cytoskeletal key components actin and microtubules. We demonstrate different 

approaches ranging from light induced softening to cross-linker expansion, which realize entropy driven 

contractions of the according system. 
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1 Introduction 

Cells are the fundamental biological building blocks of living organisms. A central module of cellular 

structures is the cytoskeleton. It comprises three main components: actin, intermediate filaments, and 

microtubules [1]. Presented studies focus on the cellular key constituents actin and microtubules, which 

are monomeric proteins able to polymerize into long filaments and tubes, respectively. In their polymeric 

form they can be further arranged into networks, bundles, or even networks of bundles. These emerging 

structures are employed for a variety of cellular tasks ranging from biological force generation [2] to cell 

motility [3–6] and division [7, 8] as well as force generation on the filament level [1, 9–11]. Besides 

dynamic processes, cells employ actin and microtubules for static, stabilizing functions [1].  
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Figure 1: Actin based aster formation without molecular motors. 
Aster-like arrangements of actin bundles emerge in the absence of molecular motors or other accessory 
proteins. Structures are solely formed by magnesium due to counterion condensation or polyethylene glycol, 
methyl cellulose, the protein albumin, and dextran inducing depletion forces. We were able to show that aster 
formation relies on an isotropic filament distribution when switching on bundling effects. Motor activity can 
support this structure formation, but myosin motors are not the inherent basis for this kind of structural 
arrangement. By detecting center points we derived radial distribution functions for all networks, which display 
an increased probability for finding a next neighbor in a distance of about 5–10 µm or 14–20 µm, respectively 
[14]. Adapted from Huber et al. [14]. 

 

The ability to employ one key component for seemingly contradictory functions requires accessory 

proteins, which are able to drastically alter properties of the underlying structure. Cells employ a 

multitude of additional proteins which are usually either associated to actin or microtubules structures. 

These proteins can form networks or bundles by cross-linking without the need to consume chemical 

energy [12]. In addition, active accessory proteins called myosins (interacting with actin) or dyneins and 
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kinesins (interacting with microtubules) can alter properties of underlying structures by converting 

chemical energy into mechanical work [13]. These interactions drive a system out of equilibrium avoiding 

a trapping in thermodynamically stable, frozen states. In that course cells can use identical building 

blocks for very different tasks. 

These influences are described within the frame of active soft matter physics, which has been used 

to describe a variety of effects such as the formation of asters [15–17]. However, not all effects which 

are described by motor activity inherently rely on the consumption of chemical energy. Emergence of 

aster structures, for instance, are conventionally attributed to molecular motors although they can form 

by self-assembly processes minimizing the system’s free energy [14]. We were able to show that aster 

formation solely relies on an isotropic filament distribution when switching on attracting, bundling effects 

(Figure 1). In an isotropic system aster formation only relies on any kind of filament attractions, which 

can be induced by counterion condensation, depletion forces, or cross-linking [14, 17, 18]. 

In the case of actin based aster formation, myosin motors enhance filament motion and thus 

anisotropies originating from initial convective mixing or rapid polymerization will decay faster [14]. Thus, 

an isotropic filament distribution is restored quickly after sample assembly, which is crucial for aster 

emergence. This example illustrates that inherent physical principles can lead to structure formation 

based on self-assembly arguments which can be supported by motor activity. However, the supporting 

role of myosins can be easily misinterpreted in this case covering the inherent basis of aster 

arrangements. 

We present further experimental evidence of inherent physical principles leading to biological force 

exertions which were conventionally attributed to motor activity. These processes rely on entropy 

maximizing arguments, which cannot be easily switched off even in active systems. Cells, for instance, 

might even employ these principles to fulfill certain tasks without the need to arrange elaborate, energy 

dissipating structures. 

 

2 Entropic contractions of actin structures 

Contractile actin structures are a crucial element for biological force generations [19]. These active 

processes mainly rely on myosin head domains able to bind to actin filaments or bundles. By hydrolyzing 

ATP to ADP, myosin head domains undergo a conformational change – the so-called power stroke – 

leading to a force exertion onto the bound actin filaments [20]. In physical terms, this cyclic process 

converts chemical energy into mechanical work for force generation. Due to these active interactions, 

actin–myosin structures are considered active soft matter. Mechanical properties of these systems 

depend on energy conversion [21]. For instance, if ATP is present in an uncross-linked actin network 

enriched with myosin minifilaments, motor activity enhances filament sliding and the system is fluidized 

[13]. In the presence of additional cross-linking proteins, myosin motors induce a contractile tension in 

the actin network leading to a stress hardening of the system [22]. As a result, structures comprising 

myosin motors, ATP, and actin filaments have been generally considered the minimal systems for actin 

based contraction [11, 17, 23]. 

These contractions play a fundamental role in cell motility and facilitate the retraction of the rear of 

a migrating cell [1]. However, also myosin knock­out cells have been reported to migrate [24]. The 
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retraction of the rear is crucial for cell motility and thus other mechanisms have to be employed to exert 

necessary contractile forces.  

An alternative concept explaining motor-free contractions involves depolymerization of the 

cytoskeleton. Depolymerization processes have been proposed to cause contractile forces solely by an 

entropy gain without the need to convert chemical energy into mechanical work [25]. By severing a 

filament within a semiflexible network, the surrounding filaments can fluctuate with additional modes 

(Figure 2). These additional fluctuations decrease the end-to-end distance of a filament and the distance 

between cross-linkers leading to an overall contraction. This hypothesis has been proven for polymer 

networks of nematode's major sperm protein and proposed as a potential actin contraction mechanism 

as well [25]. 

 

 

Figure 2: Depolymerization can cause additional fluctuation modes. 
(a) Filaments within a cross-linked network show thermal fluctuations which are influenced by fixed inter-filament 
junctions. (b) Leaving cross-linkers intact and breaking a filament increases the entropic freedom of the 
polymers. New fluctuation modes are possible decreasing a filament’s end-to-end distance. These transverse 
fluctuations pull cross-linkers closer together and can generate contractile forces. Adapted from Wolgemuth et 
al. [25]. 

 

Inducing depolymerization in vitro by actin accessory proteins such as gelsolin or cofilin is 

experimentally hardly accessible. These proteins do not only severe or disassemble actin filaments, but 

also alter polymerization dynamics yielding inhomogeneities within a network [26]. Thus, we did not 

apply any accessory proteins and studied depolymerization effects of actin arrangements with a micro-

rheological approach. Fluorescent beads were embedded within actin networks allowing observations 

as well as manipulation of the system (Figure 3a). By illuminating these beads with the appropriate 

fluorescence inducing wavelength, free radicals were formed in solution. These radicals reacted with 

the actin structure and severed filaments leading to a softening of the entire network [27]. Softening and 

contraction were visualized via embedded beads. For appropriate conditions, free radicals disintegrated 

exactly the amount of filaments needed to cause contractile behavior while not destroying the entire 

network (Figure 3b).  

However, the appropriate conditions needed to induce these contractions depend on a variety of 

parameters, which cannot be controlled at the same time. Thus, controlled studies remained elusive 

and mostly the whole network was disintegrated.  
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Additionally, these actin networks were cross-linked with heavy meromyosin (HMM), which acts 

as a passive cross-linker if ATP is depleted within the system. Therefore, the sample was stored for 

12 hours at 4 °C allowing actin treadmilling to consume all the ATP in the system. If only a minor amount 

of ATP would have been present, myosin motors would have been active and networks not entirely 

cross-linked. In these states, myosin would have fluidized the whole networks impeding controlled 

contractions [13]. To verify the findings of contractile actin network due to light induced softening further 

measurements with controllable parameters are needed. To exclude any motor activity, passive cross-

linkers such as alpha-actinin or fascin need to be employed. However, more importantly the procedure 

of light induced softening has to be further characterized to allow controlled manipulations with defined 

parameters. 

 

 

Figure 3: Light induced contraction of an actin network.  
(a) A glass capillary (80 µm diameter) is loaded with the sample solution: 1 mg/ml actin labeled and stabilized 
with rhodamine­phalloidin, cross-linked by HMM (actin:cross­linker 1:160), and enriched with 0.5 µm yellow-
green beads. Polymerization of actin is induced directly prior to sample assembly to minimize shear alignment. 
The system was equilibrated over night at 4 °C to deplete the ATP, which ensures HMM to be inactive acting as 
a stable cross­linker. Contraction was induced by irradiation with green light causing few actin filaments to 
depolymerize. (b) Light induced contraction. A one minute time course of the contraction of an actin network is 
displayed. Fluorescent tracer particles are imaged and illustrate the underlying actin network. Upon illumination 
beads revealed a significant network contraction. 

 

A first study revealed that fluorescence induced softening cannot be sufficiently suppressed by 

oxygen scavengers such as DABCO or glucose–glucose oxidase [27]. Quantitative analysis were done 

with micro-rheological methods which have shown a drastic softening of the entire network (Figure 4).  

This softening effect was evaluated for cross-linked and entangled networks interspersed with 

fluorescent beads by measuring according time evolutions of the MSDs at a lag time 𝜏 = 2 s. For cross-

linked networks thermal fluctuations increased quickly. Entangled networks displayed a similar trend, 

but converged towards a slightly higher plateau value for long times (Figure 5) [27].  

Obvious differences can be explained by the different architectures of the networks. Cross-linked 

networks initially confine beads more tightly, whereas beads in entangled networks already showed 

detectable fluctuations [27]. However, both network types displayed this softening effect and we expect 

that beads cause not only cross-link breaking but also a disintegration of actin filaments in their 

surroundings [27]. 
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Figure 4: Time dependent responses of actin networks caused by fluorescence. 
The time dependent mean squared displacement (MSD) of 1 μm NYO beads in 1 mg/ml actin networks in cross-
linked and entangled networks is shown. The MSD was calculated for consecutive 100 s intervals and is plotted 
against the lag time τ. Consecutive time intervals are displayed as a fade in color. (a) A HMM cross-linked 
network (1.34 μM HMM) was observed for 1200 s, and (b) an entangled network for 1800 s with fluorescent 
light. (c) An entangled network was observed for 1900 s with bright field microscopy before and after a 60 s high 
intensity flash of green and UV lights, respectively. Adapted from Golde et al. [27]. 

 

Using micro-rheological methods employing bright field microscopy have shown that whenever 

fluorescence was induced, free radicals formed and locally destroyed the surrounding network 

(Figure 5). However, bright field observations did not cause any network disintegration and networks 

remained virtually unchanged for long time periods [27]. 

These findings question earlier micro-rheological studies which employed fluorescent beads. Thus, 

bright field imaging for micro-rheology should be used accepting the lower spatial resolution [27]. 

However, this study proves that this softening mechanism can be used for active manipulations, but 

requires well controlled conditions, which could not be realized in the performed bulk measurements. 

 

 

Figure 5: Time dependent responses of actin networks with differing observation methods. 
The influence of fluorescence to actin networks (1 mg/ml) was investigated by time dependent MSD’s of 1 µm 

NYO beads with differing methods. The MSD at one distinct lag time 𝜏 = 2 s is displayed for the entire 

observation time 𝑡. Picture taken from Golde et al. [27]. 
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In summary, we investigated the possibility to exert biological forces without employing molecular 

motors. Actin networks were influenced by fluorescent beads, which lead to free radicals within solution 

when illuminated with the appropriate wavelength. Furthermore, this method allowed manipulations of 

these actin networks without the need to employ any additional accessory proteins. Additional proteins 

were intentionally neglected since side effects could not be controlled sufficiently.  

Optical manipulations in an appropriate regime indeed yielded contraction events of the network. 

However, these contractions could be hardly evaluated since the amount of forming free radicals was 

experimentally inaccessible. Even slight variation of bead diameters and non-uniform bead distributions 

throughout the sample impeded further controlled studies. The softening effect of actin networks due to 

fluorescence, however, has proven to be a persistent effect and has to be considered for further studies. 

Especially studies employing micro-rheology have to take these findings into account and we 

recommend to use bright field microscopy for these investigations. 

Observed network contractions are a first hint that actin structures can exert contractile forces 

without the need to convert chemical energy into mechanical work by molecular motors. Further studies 

should employ attracting mechanisms, which are also feasible in cellular systems. Counterion 

condensation or depletion forces due to molecular crowding might prove to generate forces in a 

biological relevant regime [1]. These mechanisms are solely based on minimization of the free energy 

and would not rely on an energy source such as ATP or GTP.  

 

3 Generation of directed forces in microtubule networks by diffusible cross-linkers 

networks 

Diffusion is a crucial transport mechanism in biological matter and originates from random thermal 

motion of molecules. It can be employed for generating directed forces when involved molecules are 

spatially confined. A well-known example is a gas spring. Expansions of a gas compressed in a cylinder 

can be described as an entropic process maximizing the total number of possible microscopic states in 

the system. Within the presented project, we investigated if analogous descriptions can be applied to 

subcellular systems. More precisely, cytoskeletal networks have been studied showing that diffusible 

molecules can indeed generate entropic forces [28]. We note, that this section (generation of directed 

forces in microtubule networks by diffusible cross-linkers) mainly reviews results recently published in 

[28] – for further details the reader is referred to this publication. 

Molecules in cellular systems are usually not confined within three dimensions. They are rather 

restricted to two dimensions or even to one dimension. Confinement to one dimension, for instance, has 

been reported for diffusion of proteins along microtubules [29]. Additionally, the ends of microtubules 

have been shown to act as diffusion barriers for proteins, which are involved in forcefully tethering 

kinetochores to the shrinking ends of depolymerizing microtubules [30–32], as well as for diffusible 

microtubule cross-linkers [33]. A well-known diffusible microtubule cross-linker is S. pombe Ase1 (a 

member of the Ase1/PRC1/Map65 family), which presumably stabilizes bipolar microtubule arrays. Ase1 

localizes at anti-parallel microtubule overlaps in the midzone of the mitotic spindle during anaphase [34] 

and the interphase microtubule array [35]. Forces generated by associated molecular motors and 

dynamic microtubules are assumed as the main processes in remodeling both of these bipolar 
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microtubule structures [36–38]. However, bipolar microtubule arrays are destabilized and disassemble 

in the absence of Ase1 [34, 35, 39]. Additionally, Ase1 cross-linkers decrease microtubule–microtubule 

sliding [33, 36] and arising friction forces by microtubule-Ase1 interactions might be required to balance 

motor activity within networks. Since Ase1 can diffuse in the confined space between microtubule 

overlaps [33, 40], we report that Ase1, apart from generating friction, can also generate entropic forces 

[28]. 

To study forces due to confined Ase1 cross-linkers in vitro, we formed overlapping microtubules by 

immobilizing dimly rhodamine-labeled “template” microtubules on a coverslip. Subsequently, we allowed 

50 pM Ase1-GFP to diffusively bind to this template microtubules and flushed in brightly rhodamine-

labeled “transport” microtubules afterwards. These transport microtubules were bound to template 

microtubules by using a solution without Ase1-GFP. This procedure effectively removed free Ase1-GFP 

molecules from the system (Figure 6). After these free molecules were removed, we applied a 

hydrodynamic flow of assay buffer without Ase1-GFP to slide transport microtubules along template 

microtubules. This step generated partial overlaps with reduced overlap lengths (Figure 6a/b). Since 

diffusible Ase1-GFP molecules show a higher affinity for microtubule overlaps than to single 

microtubules [33], they did not leave the overlap regions during this process. The reduction of overlap 

lengths accordingly increased the confinement of the cross-linkers. When the flow stopped, overlap 

lengths increased by directed sliding of the transport microtubules (Figure 6b). Within this expansion 

process confined Ase1-GFP molecules redistributed uniformly in the overlap regions by one-

dimensional diffusion. We tested that no Ase1-GFP molecules were lost during this procedure, which is 

illustrated by the constant integrated Ase1-GFP fluorescence intensity along the overlap regions (data 

not shown). Compression and expansion events were cyclically repeated to resemble the macroscopic 

mechanism of a gas spring (Figure 6c). 

 

 

Figure 6: Sliding of partially overlapping 

microtubules induced by entropic expan-
sion of diffusible cross-linkers.  
(a) Experimental scheme of the sliding 
assay of a transport microtubule (red) 
along an immobilized microtubule 
(orange) induced by Ase1.  
(b) Fluorescence time-lapse of the sliding 
motion. Multichannel micrographs of the 
microtubule overlap display positions of 
the freely moveable microtubule (red) as 
a function of time prior and after of flow-
induced compression of Ase1-GFP 
(green). Before imaging freely moving 
Ase1-GFP was discarded from solution. 
Schemes show the conformation of 
microtubules prior and immediately after 
the application of the hydrodynamic flow 
and the end of the experiment. The end 
of the immobile microtubule is shown by 
the dashed line.  
(c) A gas spring describes the analog of 
the molecular process and expands 
when the external load is reduced. 
Adapted from Lansky et al. [28]. 
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Figure 7: Measuring forces exerted by confined Ase1-GFP molecules in microtubule overlap regions. 
(a) Measurements were carried out using optical tweezers. A NeutrAvidin-coated silica bead was trapped and 
attached to a free, biotinylated microtubule (red). The fixed microtubule (orange) was moved by a piezo 
translational stage. The center of the trap with the free microtubule was held at a constant position yielding a 
sliding of microtubules relative to each other. (b) These experiments can be visualized by multichannel 
kymographs showing the sliding of the weakly labeled, fixed microtubules (movement driven by piezo stage) 
relative to the glowingly labeled, optically trapped microtubule. When the microtubules overlap shortened, the 
Ase1-GFP density increased. The movement of the piezo stage was slowed down roughly two minutes before 
the microtubules started to separate to obtain more important data points. See also Lansky et al. for snapshots 
of the event as well as a representative event in which the optical trap was deactivated before the microtubules 
separated resulting in the expansion of the overlap. (c) Shown are equilibrium bead displacements which 
correspond to steady state forces caused by Ase1-GFP confined in the overlaps. Forces are plotted as a function 
of overlap lengths. Shown are ten independent experiments shown in different colors. Initial fluorescence 
intensities in the overlap region correspond to 15 to 80 Ase1-GFP molecules. (Inset) Forces are displayed in a 
relation to the fluorescence intensity in the overlap. Data is averaged for overlaps of lengths ranging from 0.6 to 
0.8 µm (corresponds to the grey box in the main panel; the color-coding is consistent for according experiments). 
Overlap lengths and forces were offset-corrected by assuming that the overlap length is zero right before the 
microtubules were pulled apart (dashed line) and that the force is zero after the microtubules were pulled apart.  
Adapted from Lansky et al. [28]. 

 

We quantified arising forces, which were solely exerted by Ase1 confinement between partially 

overlapping microtubules, by optical tweezers (Figure 7). In a first step we formed microtubule 

overlaps in a similar manner as described above. Subsequently, we attached a silica micro-sphere 

to a transport microtubule by optical tweezers in the absence of Ase1-GFP in solution [28]. After 
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establishing this conformation, we used a piezo translation stage and moved the template micro-tubule 

in steps relative to the laser trap in the direction along the longitudinal axis of the template 

microtubule. In that course we established partial microtubule-overlaps and compacted Ase1-GFP 

until the microtubules were pulled apart (Figure 7a/b). After every step, the system was allowed to 

equilibrate before measuring the force. These forces have been found to increase with a decreasing 

overlap length reaching values up to 3.7  ± 1.8 pN (average ± SD, n = 10) just before the two 

microtubules were pulled apart (Figure 7c) [28]. Additionally, fluorescence intensities measurements 

revealed that forces increased linearly with increasing Ase1-GFP densities in the overlap regions 

(Figure 7c, inset) [28]. 

To explain the origin of observed forces generated by Ase1, we analytically modeled the 

mutually exclusive binding of cross-linkers to discrete binding sites along a single protofilament in a 

microtubule overlap (Figure 8) [28]. In brief, for a constant number of confined cross-linkers in the 

overlap – when no cross-linkers bind into or unbind from the overlap (scenario as in Figure 6 and 

Figure 7) – the entropic expansion force 𝐹 acting on the transport microtubule is found to be given 

by the one-dimensional analog of the ideal gas law 𝐹𝐿 ≅ 𝑛𝑘B𝑇 [28], with 𝐿 being the overlap length, 

𝑛 the number of cross-linkers within the overlap, 𝑘B the Boltzmann constant, and 𝑇 the absolute 

temperature. This model is consistent with our experimental results showing that forces increase 

linearly with the density of the cross-linkers in the overlap (Figure 7c, inset). Quantitative tests of the 

relation of force and cross-linker density is not feasible due to experimental uncertainties in overlap 

lengths and the amount of proteins. However, the range of maximum measured forces is predicted 

 

 

Figure 8: Ase1-GFP entropy gain combined with an exponential scaling of friction forces can explain the 

expansion of microtubule overlaps in the absence of Ase1-GFP. 
(a) Averaged velocities of Ase1-GFP induced microtubule sliding are given as a function of overlap length. 
Presented are experimental data (red open circles, 95 events, 48 microtubules, experiments as presented in 

Figure 6b and results from the analytical model (grey dashed line, 𝑣MT = 2𝐷Ase1
MT /𝐿 with 

𝐷Ase1
MT  = 0.085 ± 0.007 µm2 s-1 assuming a constant number of Ase1-GFP in the overlap). Overlaps were allowed 

to expand for a minimum of 15 minutes. Binned averages (± SD) of experimental data shown as solid red circles. 

(b) Time traces of overlap expansions acquired from the experiments (data as shown in Figure 8a) are given. 
Different color-coding illustrate individual events. Visible variability of the time traces reflects the stochastic 
nature of the underlying force generating mechanism. Adapted from Lansky et al. [28]. 
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correctly. The model predicts the generation of forces in the range of 1 pN if cross-linkers are 

maximally compressed between two microtubule protofilaments. In this case, all binding sites within 

the overlap region are fully occupied by Ase1 molecules. Structural work on Ase1 homologs 

suggests that the necessary high cross-linker densities are indeed possible [41]. Observed maximal 

forces of 3.7 ± 1.8 pN potentially indicate that multiple rows of Ase1 cross-linkers bind to neighboring 

protofilaments in the overlap [28]. 

In addition to these findings, we tested if the combination of these entropic forces and frictional 

drag exerted by the Ase1 cross-linkers can also elucidate the observed sliding velocities of transport 

microtubules in absence of external load (scenario as in Figure 6). Viscous drag exerted by the 

solution was neglected due to its small contribution at low velocities [42, 43]. We described the 

frictional drag coefficient 𝛾 of a single Ase1-microtubule link following the Einstein relation 𝛾 =

𝑘B𝑇/𝐷Ase1
MT  [44], where 𝐷Ase1

MT  is the diffusion constant of a single Ase1 molecule on a single 

microtubule [28]. The velocity of the overlap expansion is given by 𝑣MT = 2𝐷Ase1
MT /𝐿 when assuming 

a linear dependence of the frictional drag on the number of diffusible cross-linkers [28, 43]. This 

expression is independent of the number of cross-linkers in the overlap and qualitatively reproduces 

the measured velocities (Figure 8b) [28]. 

These entropic forces might be even sufficient to counteract forces generated by microtubule-

cross-linking motor proteins. To test this hypothesis we formed and imaged microtubule overlaps in 

the presence of Ase1-GFP and D. melanogaster kinesin-14 Ncd (Figure 9). Ncd does not directly 

interact with Ase1 [33] and started to slide the microtubules apart. Within this process, the Ase1 

molecules were compressed in the shortening microtubule overlaps. The number of bound Ase1-

GFP linkers stayed roughly constant during this compression due to their high affinity to the overlap 

region. Additionally, the number of Ncd molecules decreased linearly with decreasing overlap 

lengths [33]. Typically after 10 minutes the sliding motion stopped and lengths of the overlaps 

remained constant. This result emphasizes that sliding forces induced by motor activity can be 

balanced by the entropic expansion force of Ase1. The description is analogous to a gas spring, 

where external loads are balanced by the internal pressure of the gas [28]. 

In line with the hypothesis that the Ncd sliding forces are balanced by the Ase1 generated forces, 

we found that the overlap lengths immediately increased when either (1) Ncd motors were 

deactivated by exchanging ATP for ADP in the assay buffer (Figure 9a) or (2) cross-linkers were 

added into the overlaps by increasing the Ase1-GFP concentration in solution (Figure 9b) [28]. Thus, 

analog to a gas spring the overlap expanded when the force balance was tipped by either (1) 

reducing the opposing, external load or (2) raising the internal pressure by increasing the number 

of molecules in the overlap. These findings demonstrate that diffusible cross-linkers are capable of 

generating entropic expansion forces of the same order of magnitude as the forces generated by 

multiple molecular motors [28]. 

Our findings show that the mechanism of entropic force generation due to confined molecules is a 

universal phenomenon and has to be considered beyond the Ase1/PRC1/ MAP65 family of microtubule 

cross-linking proteins. Nucleosome unwrapping, for instance, was recently quantitatively explained by 

a one-dimensional pressure generated by DNA binding proteins diffusing along a DNA strand [45]. 
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Moreover, entropic forces can be also generated in 2D systems. This is illustrated by the example of 

crowding of membrane-bound proteins generating a lateral pressure leading to bent membranes [46].  

 

 

Figure 9: Entropic forces caused by Ase1 balance motor activity of multiple Ncd motors.  
An overlay of multichannel kymographs shows the sliding of a transport microtubule (red channel) on top of an 
immobilized microtubule (very dimly labeled). Partial microtubule overlaps were formed in the presence of Ase1-
GFP and Ncd. The contributing forces established a balance between Ncd-motor generated forces (acting in 
the direction of decreasing overlap length) and Ase1-GFP entropic forces (acting in the direction of increasing 
overlap length). (a) Shown is the shift of the force balance after deactivation of the Ncd-motors by exchanging 
ATP with ADP in the assay buffer. Due to entropic expansion of Ase1-GFP molecules bound in the overlap 
regions, the free microtubule slid towards an increasing overlap length. The Ncd-motor concentration was kept 

constant (300 pM in solution) during the expansion phase. Additionally, no free Ase1-GFP was present in the 

solution. (b) Shifting the force balance due to an increased Ase1-GFP concentration in solution (from 91 pM to 

1400 pM) lead to an increased binding of Ase1-GFP molecules in the overlap region. The free microtubule slid 

towards an increasing overlap length and against the ATP-driven active force of Ncd (kept at a constant 

concentration of 300 pM in solution). Adapted from Lansky et al. [28]. 

 

In the cytoskeletal system, the constriction of the actin contractile ring has been conventionally 

attributed to a non-muscle myosin II (NMII) translocation of actin filaments. Recent experiments, 

however, emphasize that NMII motor activity is not required to translocate actin but to cross-link actin 

filaments [47]. Our findings suggest that NMII is potentially able to generate tensile forces between actin 

filaments via entropic expansion if these molecules can diffuse between filaments [28].  

The presented in vitro system allows well-controlled experimental studies of the interplay between 

entropic-expansion forces, cross-linker-condensation forces, and cross-linker-frictional forces driving 

the sliding of filaments relative to each other. By examining a minimal system consisting of cross-linkers 

and microtubules, outside of the cytoplasm, we gained access to biophysical properties of the system 

that are impossible to access in vivo where they are obscured by numerous interdependent processes. 

Our results demonstrate that the thermal motion of confined cross-linkers constitutes a force-producing 

element within self-organizing filamentous networks and can complement forces generated by 

molecular motors and filament dynamics [28]. 

 

4 Conclusion 

Conventionally, most biological force generating mechanisms are described by energy dissipating 

processes. These approaches are reasonable since cells are active entities consuming a lot of chemical 

energy to avoid trapping in thermodynamically frozen states. However, we show that some functions or 

even structural assemblies can be achieved without employing elaborate, energy dissipating structures. 

We present a variety of studies and experimental methods suitable to explain biological force exertion 

based on self-assembly, free energy minimizing arguments. Within these investigations, the cytoskeletal 
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key components actin and microtubules were used emphasizing the biological relevance of the 

presented findings. Actin based contractions were initialized by depolymerization forces due to light 

induced softening. This softening effect, however, can be hardly controlled and eventually lead to 

disintegration of the entire network. However, some experiments revealed contraction events indicating 

the possibility of actin based force generation due to depolymerization effects. Further experiments are 

needed to study the potential role of a controlled structural disassembly. Additionally, further 

investigations are needed to explore entropic effects in active environments such as cells. The 

presented force generation due to entropic crosslinker expansion between microtubules is a major step 

towards understanding the role of entropically driven processes in cells. Exerted forces are on the same 

scale as forces induced by active microtubules – motor interactions and thus in a biological relevant 

regime. Presented self-assembly interactions, however, do not rely on converting chemical energy into 

mechanical work and can even counteract motor activity. This effects can feasibly contribute to cellular 

processes such as the formation of the mitotic spindle. These findings demonstrate how passive 

processes can contribute to cellular functions and that self-assembly processes should not be neglected 

in active systems such as cells. 
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