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Abstract

Compressed sensing technique is a recent framework for signal sampling and recovery. It allows
signal acquisition with less sampling than required by Nyquist-Shannon theorem and reduces data
acquisition time in MRI. When the sampling rate is low, prior knowledge is essential to reconstruct
the missing features. In this paper, a different reconstruction method is proposed by using the principal
component analysis based on pattern recognition. The experiments demonstrate that this method can
reduce aliasing artefacts and achieve a high peak signal-to-noise ratio compared to a compressed
sensing reconstruction.
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1 Introduction

Acquisition of MRI in clinical applications may be time-consuming and may lead to reduced
patient throughputs and increased image artefacts due to the patient moving during imaging. Reducing
imaging time is financially beneficial to a total cost and can facilitate more studies as well. One
approach of speeding up the acquisition of MRI is to undersample k-space data. Aliasing artefacts due
to the violation of Nyquist-Shannon rule [1, 2] in the reconstructed magnetic resonance (MR) images
can be reduced by a randomly undersampling format [3, 4], which is part of the Compressed Sensing
(CS) framework. CS techniques have been extensively used in undersampled MRI reconstruction
since 2006 [5–8]. The premise of applying a CS framework is that the MR images are sparse in
a certain orthogonal transformation domain (aka basis) [5, 9]. However, when the object is largely
undersampled, the missing features may not be satisfyingly reconstructed. In this situation, prior
knowledge of similar images can provide constructive information to recover those features, such as
shapes and relative contrast to the surrounding tissues.

Principal component analysis (PCA) is a useful statistical technique that extracting the principal
components from a set of objects (similar images, in our case) [10, 11]. The number of principal
components is less than or equal to the number of images in the database, thus the combination of
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principal components from PCA can be used as a transformation domain in the CS reconstruction.
This has been proved effective for the recovery of the signal from undersampled data in wireless
sensor networks [12], or the extraction of NMR parameter mappings based on k-t data (e.g. [7]) and
will be referred as PCA-CS hereafter.

In this paper, PCA recognition reconstruction (PCA-RR) is proposed to improve the MR image
quality, by utilising PCA based on pattern recognition. This method is different from the CS recon-
struction but shares many of its benefits. Instead of enforcing one matched image as a sparse repre-
sentation, a subset of the MR images are chosen to complement the undersampled k-space data of the
image under study. Peak-Signal-to-Noise-Ratio (PSNR) [13] is calculated to evaluate and compare
the performance of PCA-RR and PCA-CS at two different sampling rates.

2 Materials and method
2.1 Phantom and sampling information

As approachable biological samples, carrots were chosen to verify the feasibility of the proposed
algorithms. Twenty-five carrot taproots were used to obtain 200 axial images in total. MRI data was
acquired on a 9.4 T Bruker BioSpec pre-clinical MRI system using the multi-slice spin echo pulse
sequence with the repetition time of 6 s and echo time of 15 ms. The slices of the MR images have a
thickness of 2 mm with an interval of 4 mm. The field of view is 25×25 mm2 with the resolution of
0.0977×0.0977 mm2. Thus, each slice has a data-size of 256×256.

The full k-space data was acquired by the MRI system and random masks were designed in order
to obtain the undersampled k-space data of certain slices. The schematic of the undersampling mask
with sampling rates of 20% and 50% for the k-space data is shown in Fig.1. The white areas mean that
the corresponding k-space data was sampled, whilst the k-space data in the black areas was filled with
zeros. These undersampling masks are based on the Cartesian coordinates. When the sampling rate is
50%, it means that 128 (=256×0.5) random lines in the phase direction are used for future processing;
when the sampling rate is 20%, only 51 random lines are used, which lose more information than 50%
sampling. All algorithms were implemented on Matlab (The Mathworks, Natick, MA).

(a) (b)
Fig. 1: Random undersampled masks, sampling rate is (a) 0.5; (b) 0.2.

2.2 Reconstruction procedure using PCA (PCA-RR)

The determination of the principal component basis and the procedure of the principal components
analysis are illustrated in the dashed box of Fig. 2. Before performing the PCA procedure, each image
in the database (I1,...Id) is re-arranged to a vector (?I1,...?Id), thus the database can be treated as a matrix
(D) with the row size equal to the number of pixels (M ×N) in one image and the column size of d
(the number of images in the database). A covariance matrix (G) is constructed using the database
matrix D:

G= (D−M)T (D−M) (1)

whereM is the mean matrix, and the columns inM are identical, which are equal to the mean vector
from (?I1,...?Id). As a result, the elements in the covariance matrix indicate the correlation of the image
vectors in the database. By performing the eigen-decomposition of G, the eigenvectors and eigen-
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values can be determined. B = (b1, ...,bi,bn), bi is the eigenvectors, which can produce principal
components in PCA. Then, each image has the unique projection coefficients (PJi) by projecting the
image to the principal components, no matter it is in the database or not. This means that we can
use projection coefficients and principal components to fully or approximately reconstructed images.
Here, we propose a method called PCA recognition reconstruction (PCA-RR), and the procedure is
outlined as Fig. 2.

In Fig. 2, a vector of projection (PJ?) is obtained from projecting the undersampled image to the
principal components. A subset of q images in the database are selected when their Euclidean distance
(dei) between the corresponding PJ and PJ? is smaller than δ , which is a user-controlling parameter
sensitively determining the performance of the algorithm. The detailed discussion of choosing δ is
beyond the text. Subsequently, these q images are used to constitute an image Ic with the correspond-
ing weighting factor, i.e. the inverse of the normalized Euclidean distance. After that, the estimated
k-space data via Fourier Transform (FT) was used to fill the missing k-space. In other words, the mea-
sured k-space data was kept during the iteration procedure, the unmeasured k-space data was filled
with different estimated data until the images of the neighbouring iterations satisfy the condition:

||Iu(p)− Iu(p−1)||2 < ε (2)

Fig. 2: The flow chart of the PCA-RR procedure.

3 Results and discussion

The reconstructed data was quantitatively evaluated in terms of PSNR. PSNR measures the dif-
ferences between the reconstructed image and the original image, and is defined by[13]

PSNR= 20log10

?
MAX√
MSE

?
(3)

where, MSE is the mean square error and MAX is the maximum pixel value of the image.
The reconstructed results of an undersampled image with 50% sampling rate is shown in Fig. 3.

The full k-space information was excluded from the database. Since the sampling rate was moder-
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ate, the undersampled image via zero-filling FT still preserved much of the information (Fig. 3(a)).
Fig. 3(b) is the reconstructed results using PCA-CS, keeping 174 principal components (with the
corresponding projection coefficients larger than 5e-3). Fig. 3 (b) and (c) are the reconstructed re-
sults using PCA-CS (keeping 174 principal components) and PCA-RR (choosing 6 matched images),
respectively. PSNR of PCA-RR, PCA-CS and zero-filling FT are identical within uncertainties.

(a) (b) (c) (d) 
Fig. 3: Reconstruction results of the undersampled image with sampling rate is 0.5: (a) the full image; (b) the undersam-
pled image via zero-filling FT (PSNR = 24.654); (c) reconstructed images using PCA-CS method (PSNR = 24.679); (d)
reconstructed images from PCA-RR (PSNR = 24.696)

The reconstructed results of the same image (Fig. 3(a)) with 20% sampling rate is shown in Fig. 4.
Due to the high undersampling rate, the undersampled image via zero-filling FT had more blurring and
a smaller PSNR (Fig. 4(b)) compared with Fig. 3(b). Fig. 3(c) is the reconstructed results using PCA-
CS, with the same threshold of the projection coefficients (5e-3) as described above. The number
of principal components used here was smaller than 50% sampling. PCA-CS filled more details in
the centre and reduced the blurring compared to the undersampled image. The feature in the white
circle in Fig. 4(b) was suppressed after using PCA-CS reconstruction. Fig. 4(c) is the reconstructed
results using PCA-RR, by choosing 6 matched images. Like the PCA-CS results, more details and
less blurring in PCA-RR can be seen, but the difference from PCA-CS is that the white circled feature
can be clearly reconstructed. Moreover, the PSNR of the reconstructed images via PCA-RR is higher
than zero-filling FT and PCA-CS.

(a) (b) (c) (d) 
Fig. 4: Reconstruction results of the undersampled image with sampling rate is 0.2: (a) the full image; (b) the undersam-
pled image via zero-filling FT (PSNR = 17.520); (c) the reconstructed image using PCA-CS (PSNR = 19.887); (d) the
reconstructed image from PCA-RR (PSNR = 17.978)

The number of iterations were compared when the sampling rate was 50% and 20% and are
illustrated in Fig. 5. The number of iterations is larger than 7 when the sampling rate is 20%, whilst
this value decreased to less than 4 when the sampling rate was 50%. As can be seen from Fig. 5, more
iterations was needed when the sampling rate was lower.
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Fig. 5: Comparison of the number of iterations with different sampling rates
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4 Conclusions

A new reconstruction method (PCA-RR) for highly undersampled MR images was proposed in
this paper. When the k-space data is highly undersampled, it is important to draw on prior knowledge
of the sample during the reconstruction. PCA-RR utilises the merits of a PCA-based pattern recog-
nition procedure. In the meantime, it shares the benefits of reduced acquisition time as typical for
CS schemes, filling the unsampled k-space data with an iterated procedure. The experimental results
of two undersampled carrot images with different sampling rates were shown in this paper. The un-
dersampled image via zero-filling FT can preserve more information when sampling at a higher rate.
Furthermore, when the sampling rate is lower, more iterations are required to obtain the same result
as with the higher sampling rate. Nevertheless, in both cases, the PSNR of PCA-RR is higher than
PCA-CS, which demonstrated that PCA-RR was valid and superior to PCA-CS.
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