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Abstract

Pore length scales and pore surface relaxivities of sandstone were studied on a 2 MHz Rock
Core Analyzer in this work. To determine the pore length scales of rock cores, high eigenmodes of
diffusion equation were detected with optimized encoding periods in the presence of internal magnetic
fields Bin. The results were confirmed by a 64 MHz NMR system. Furthermore, this methodology
was combined with relaxometry measurements , which provides the two-dimensional correlation of
pore length with relaxation time and yield information on the surface relaxivity of rock cores. The
estimated surface relaxivities were compared with the results from an independent NMR method.
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1 Introduction

The pore length scales of rock cores can be determined relying on the internal magnetic fields Bin

induced by the susceptibility contrasts between solid matrix and saturating fluids [1]. A non-uniform
magnetization profile can be created by this spatially distributed fields within the pore space and will
attenuate with high eigenmodes in the spin bearing molecular diffusion equation, the eigenvalues of
which scale to the pore size directly. This technique has been widely used in high-field NMR systems
[2–5]. In this paper, we lay out the theory of this technique, and describe and explain how to measure

© 2014, Huabing Liu 
diffusion-fundamentals.org 22 (2014) 7, pp 1-5

1



the high eigenmode in rock sample at low-field. Using the optimized magnetization encoding period,
the one-dimensional (1D) result from sandstone rock core proved its feasibility in the field as low
as 2 MHz. Furthermore, we extend this implementation to the two-dimensional (2D) experiments
correlating different eigenmodes. The result provides the correlated distribution of pore length scales,
relaxation time distribution, and the information of surface relaxivity. The estimated surface relaxivity
of the sandstone were compared with the result from Padé approximant extrapolation in diffusion-
relaxation correlation maps [6].

2 High eigenmode detection at low field

When molecules diffuse within in the pore space of the porous media where the absorption of
the pore surface characterized by ρ, the general solution of spin bearing molecular diffusion equa-
tion can be expressed as: m(?r, t) =

?∞
n=0 Anϕn(?r)e

− t
τn [7]. Here ϕn are orthogonal, normalized

eigenfunctions of the diffusion equation and the n-th eigenmode amplitude An is calculated by:
An = 1

V

?
m(?r, 0)ϕn(?r)dV . Considering the behaviors of eigenfunctions in pore space, the am-

plitude of ground mode will be approximate m0/V and high ones will be small if the magnetization
is uniform in pore space. The eigenvalues τn in the 1D planar pore space can be expressed by:

τn =

? a
ρ

when n = 0
a2

Dn2π2 when n ≥ 1
(1)

under the condition of fast diffusion region (ρa/D ? 1). In Eq. 1 a is the pore dimension and ρ is
the longitudinal or transverse surface relaxivity depending on type of the magnetization involved in
the diffusion period. The eigenvalues are ordered from large to small with increasing index number
n. As can be seen in Eq. 1, the high modes (n > 0) of the diffusion equation are more suitable as
a straightforward determination of pore length since they do not depend on ρ. However, the relative
intensities of the high modes are much weaker compared to ground mode [7]. In order to take advan-
tage of the high modes for the detection of pore length scale, the proportion of the high modes need
to be amplified.

One efficient approach to enhance the contributions from the high modes was developed in the
presence of spatially bounded internal magnetic field Bin in porous media [8]. The 1D pulse se-
quence of this technique is given in Fig. 1. The first π/2 rf pulse in the 1D signal pulse sequence
rotates the longitudinal magnetization in the transversal plane. During the encoding period of te, the
magnetization in pore space will be modulated with an encoding phase Φ in the presence of the spa-
tially induced magnetic fields Bin: m(?r, te) = m(?r, 0)e−iΦ = m(?r, 0)e−iγBin(?r)te . The second π/2
rf pulse stores the dephased magnetization back to the longitudinal direction. By choosing the phase
of the second π/2 rf pulse to be incremented by 90◦ as compared to the first π/2 rf pulse [9], the
initial magnetization is m(?r, te) and the amplitude of ground mode A0 = (1/V ) ·

?
m(?r, te)ϕ0dV =

(1/V ) ·
?
m(?r, 0) sin Φϕ0dV ≈ 0.
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Fig. 1: 1D signal (top) and reference (bottom) pulse sequence used to detect high eigenmode in porous media. te is the
encoding period and tdiff is the observation time of molecular diffusion.
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In the context of low-field, the high mode will be too weak to be detected if one uses the experi-
mental condition for the encoding period te at high-field. This is because of the fact that the strength
of the encoding phase Φ is characterized by γ∆χB0te. This phase will be too small at low-field
and the magnetization can be considered uniform in different position of pore space after a short te,
which will lead to the dominance of the ground mode in the solution of the diffusion equation in the
pore space. The strategy to enhance the sensitivity of high eigenmodes at low-field is extending the
encoding period te to “visualize” the difference of magnetization in spatial position. However, the
parameter te can not be chosen too long, considering the predominant contribution from first T1 mode
and the fact that the minimal pore length detected here is limited by

√
Dte.

To isolate the contribution of ground T1 mode during the observation time tdiff, the 1D reference
pulse sequence is applied as shown in Fig. 1 (bottom). The π rf pulse in the middle of the magneti-
zation preparation period cancels the phase accumulation due to Bin. As a result, the magnetization
after the second π/2 rf pulse is uniform in the pore space and the ground T1 mode dominates again
in the diffusion equation during tdiff. Therefore, the data sets from these two pulse sequence are sub-
tracted using the ratio at long tdiff, leaving a signal decay only due to the first T1 mode, whose decay
factor relates to the pore length according to Eq. 1:

S(tdiff) = m0 · I1 exp(−
tdiff
τ 11

) = m0 · I1 exp(−
tdiff ·Dπ2

a2
) (2)

where τ 11 is the eigenvalue and I1 is the relative intensity of the first T1 mode.
Since most of the rock samples have wide pore length range, the signal attenuation in Eq. 2 will

follow a multi-exponential decay. The τ 11 distribution can be obtained using a 1D numerical inversion
method and the pore length scales of rock cores can thus be acquired via a ≈ π

?
Dτ 11 from Eq. 1.

3 Eigenmode Correlation and pore surface relaxivity at low field

As seen from Eq. 1, the correlation of ground and high eigenmodes will provide the information
of pore length a and pore surface relaxivity ρ simultaneously if the detection of these two eigenmodes
are combined in a 2D experiment. To achieve this, a CPMG pulse train is attached after the afore-
mentioned 1D pulse sequence to correlate the pore length scale with the transverse relaxation time T2

(see in Fig. 2). If the same set-up during the stimulated echo pulse sequence part is adopted, there
will be mainly ground and first T1 modes contributing in the first domain of this 2D pulse sequence.
After that, a stimulated echo can be observed and the ground T2 mode dominantly contributes to the
second domain of the 2D pulse sequence. Subtracting these two data sets from 2D pulse sequences
using the weighting of first and ground T1 mode in the first domain will yield a 2D data characterized
by the first T1 mode and ground T2 mode:

S(tdiff, NTE) = m0 · I1,0 exp(−
tdiff
τ 11

) exp(−NTE

τ 02
) = m0 · I1,0 exp(−

tdiff ·Dπ2

a2
) exp(−NTE

τ 02
) (3)

where τ 11 is the eigenvalue of the first T1 mode and τ 02 is the eigenvalue of the ground T2 mode. I1,0 is
the relative correlation intensity of the first T1 mode and the ground T2 mode.

Therefore, the high and ground-eigenmode correlation function is obtained using 2D numerical
inversion algorithm [10] and can be rescaled to pore length-relaxation correlation function F (a, T2)
via a ≈ π

?
Dτ 11 .

Based on the acquired correlation function of pore length and relaxation time F (a, T2), the sur-
face relaxivity ρ2 can be estimated. With the assumption of a spherical pore shape, the relation-
ship between transverse relaxation time T2 and pore length (or pore diameter) a can be derived as:
T2 ≈ 1

6ρ2
a. Therefore, the relationship T2(a) can be easily built from the obtained 2D correlation

function F (a, T2) and the relaxation time T2 can be reinterpreted as a function of a. Thus, the results
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Fig. 2: 2D signal (top) and reference (bottom) pulse sequence used to correlate the high and ground eigenmode of diffusion
equation. TE is echo spacing and N is echo number of CPMG pulse train.

allow one to extract the effective surface relaxivity ρ2 of rock cores.

4 Experimental results

The sandstone sample has the weighting porosity of 16.4% and gas permeability of 30 mD. The
experiments were performed on a 2 MHz Rock Core Analyzer produced by Magritek Ltd. To validate
the pore length scales, the 1D experiments were performed on a 64 MHz cryogen free NMR Imaging
system. The results of pore length scales at two different field strengths are shown in Fig. 3 (a)
and show good correspondence, which demonstrates that the method of using high eigenmode to
determine pore length scales of rock cores is feasible even at 2 MHz. Some regions with small pore
length were not resolved at 2 MHz compared to the results from 64 MHz, which is ascribed to the
longer te used in low-field experiments, during which the molecules diffuse over the local pore length
and the non-uniform magnetization profile is averaged in those pores.
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Fig. 3: (a) The pore length scales of sandstone determined at 2 MHz (solid lines) and 64 MHz (dashed lines), respectively.
The pulse length of rf pulse was set to be 25 µs. The encoding period te was 1.5 ms at low-field and 400 µs at high-field.
The observation time tdiff varies from 0.5 ms to 3000 ms in 50 steps logarithmically. (b) Correlation function F (a, T2)
of sandstone at 2 MHz. The 2D correlation experiments were performed with the same parameters from 1D stimulated
echo sequence and complemented by a CPMG pulse train. The red dashed lines represent the pore length scales from 1D
experiments and were normalized for the comparison with 1D projected pore size distribution from F (a, T2). The echo
spacing TE is 125 µs and echo number N is 6400. The dashed line corresponds to the surface relaxivity of ρ2=20 µm/s.

The correlation function F (a, T2) of sandstone is shown in Fig. 3 (b). The 1D curves are the
projections of pore length scales and T2 relaxation distribution. The 2D distribution can be separated
into two parts according to the tendency of the distribution and each part exhibits different correlation
information of pore length and T2. For the distribution in the T2 range from 0.1 s to 0.6 s, it shows
a good linear behavior and lies along the correlated dashed line representing the surface relaxivity of
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20 µm/s, which was a reasonable value in sandstone. For the distribution in the T2 range from 0.1 s to
smaller value, the distribution deviates more from the dashed line with decreasing of T2 value, which
may be caused by the existence of strong paramagnetic materials (clay for example), leading to the
extreme large surface relaxivity in smaller pores.

The surface relaxivities of this rock sample were evaluated using the Padé approximation in 2D
D-T2 correlation map [6]. The surface relaxivities ρ2 from this method were estimated to be 25 µm/s,
which was slightly overestimated in sandstone. This is probably caused by the overestimation of Da

due to the significant internal gradient effect during the diffusion encoding time.

5 Conclusion

The method of using high eigenmode of spin diffusion equation to determine the pore length
scales of rock samples has been proved feasible at 2 MHz Rock Core Analyzer. The pore length scales
determined at 2 MHz were comparable and confirmed with the distributions from 64 MHz high field.
Moreover, the surface relaxivity of rock sample has been estimated from the 2D eigenmode correlation
experiment. The results were compared and validated by the results from Padé diffusion-relaxation
correlation experiment.
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