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Abstract 
 In this paper bulk diffusion techniques in case of metals and alloys will be reviewed 
with a special emphasis on resistometric technique. The experiment is restricted only to those 
metals, which can be made in the form of wire but has the advantage of applying to materials 
whose suitable radioactive isotopes are not available. A brief introduction along with 
different diffusion mechanisms with corresponding activation energies, diffusion coefficients, 
correlation factors, isotope effect, enhancement factor, etc. is also incorporated. Three models 
for bulk diffusion are also mentioned.  

1 Introduction 
 The perfect crystal has an infinite three dimensional repetition of identical units while 
real crystals are limited in size containing some disorder in stacking, called defects. Many of 
the interesting properties of solids are controlled by them which include the electronic 
structure reflected in optical and spin resonance data, formation energies, and diffusion 
parameters. Defects represent singularity in an otherwise perfect crystal and these 
singularities are accompanied by localized increase of internal energy relative to that of the 
perfect crystal. Of course the concept of defects is used only when concentration of such 
defects is small; otherwise the crystalline reference state loses its unique identity. Most of 
them occur as a result of atomic migration through the solids (e.g. diffusion phenomena, 
sintering, electrolytic conduction and solid state chemical reaction). However out of all these 
phenomena, diffusion phenomena are the predominant one and so the understanding of the 
matter transport through solids via diffusion phenomena is of great importance. The theory of 
diffusion is based on the idea of atomic jump from one lattice site to another. One can 
calculate the frequencies of these jumps and correlates them with diffusion parameters. 
Atoms in a crystal oscillate around their equilibrium positions and occasionally these 
oscillations become violent to allow an atom to change sites. It is these jumps from one site to 
another which gives rise to diffusion in solids. First an elementary survey of the diffusion 
mechanisms [1-4] will be given. 

2 Mechanisms of diffusion in bulk samples 
 In thermal equilibrium at a temperature above absolute zero, a crystal will contain a 
certain concentration of vacant lattice sites. An atom adjacent to a vacancy may jump into the 
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vacancy producing diffusion by vacancy mechanism (figure 1). This is the simplest case. If 
the atoms in the region of a vacancy relax inward into the vacant lattice to such an extent that 
the regular lattice structure in this region out of several atom distances disappears, the 
resulting region is called relaxed region. When a binding energy exists between vacancies a 
fraction of vacancies in the form of bound vacancy pairs (known as divacancies) may be 
obtained. Diffusion by means of divacancies may in certain materials be appreciable at high 
temperatures. The vacancy mechanism is well established as the dominant mechanism of 
diffusion in most pure fcc metals and alloys and has been shown operative in many bcc and 
hcp metals as well as in ionic compounds and oxides. 

 

 
Figure 1 Vacancy mechanism; Interstitial mechanism; Exchange and Ring mechanism of 
diffusion; Diplon mechanism of diffusion model - (i) single diplon, (ii) reorientation of diplon 
and (iii) diplon motion. 

 
 Some atoms may occupy interstitial positions in the crystal lattice and may jump into 
a near neighbouring interstitial site without permanently displacing any of the matrix atoms. 
This is direct interstitial mechanism. This mechanism is particularly likely for diffusion of 
small impurity atoms, which easily fit into interstitial sites and during movement do not 
greatly displace the solvent atoms from their normal lattice sites. When the interstitial atom is 
nearly equal in size to the lattice atoms, diffusion is more likely to occur by the interstitialcy 
mechanism. Here the interstitial atom does not move directly to another interstitial site. 
Instead it moves into a normal lattice site and the atom, which was originally at the lattice 
site, is pushed into a neighbouring interstitial site. Thus it prevents an appreciable local 
distortion of the neighbouring lattice atoms. A third type of interstitial configuration is the 
crowdion. Here the additional atom is introduced into a more or less close packed row of 
atoms. Each atom in the row, to perhaps ten atom distances from the additional atom, is 
displaced somewhat from the equilibrium lattice positions. The crowdion configuration can 
move along this row. In passing down a row from one end to the other the crowdion displaces 
each atom in the row one atom distance. In some cases interstitialcy is centered on a lattice 
site and two atoms occupy this site symmetrically in a dumbbell like configuration, each 
being displaced by an equal amount from the normal lattice position. 
 A pair of neighbouring atoms may exchange places, or a ring of atoms may rotate 
about a common center (figure 1). These mechanisms are unlikely in crystals with tightly 
packed atom structures since each atom in this case closely surrounded and hemmed in by its 
neighbours. The atoms need to be considerably compressed before they could squeeze past 
one another and interchange positions. These mechanisms may be possible in very loosely 
packed crystals (bcc lattice). 

© 2014, A. Ghorai 
diffusion-fundamentals.org 21 (2014) 1, pp 1-18

2



 

 Let two atoms be paired at a single substitutional position of a structure. They may be 
composed of host-host, host-impurity, or impurity-impurity atoms, and offered the 
designation diplon [5]. Diplon has only rotational symmetry about its axis. Diffusive 
transport can occur by the reorientation of the diplon and jumping of one of the atoms of the 
diplon to an adjacent atom (figure 1). The formal theory for diffusion by this mechanism, as 
well as for the equilibrium between the diplon and other impurity states, is the same as for the 
conventional interstitials. Since either atom of a host-host diplon can remain at the lattice, 
when the diplon moves on, such a defect move essentially like a self-interstitial. An impurity-
impurity diplon, on the other hand, must perform some sort of exchange with neighbouring 
host atoms if it is to move. If it is tightly bound as well, its mechanism of motion must be 
somewhat similar to that of a substitutional impurity. However, the reorientation of the 
diplons, are not necessarily capable of producing diffusion. Finally there is the host-impurity 
diplon, which might move by a vacancy mechanism, but will be most interesting when it does 
not. Then in structures with closed interstitial voids, in the sense that the energy barriers to 
passage out of a given void through its various faces are all approximately equal, neither a 
diplon motion by translation of the impurity atom nor a rotation of the diplon about its lattice 
is sufficient to cause net diffusion of the impurity atom. Both are required or else a single 
motion, which produces the effects of both is required, if the impurity is to show any long 
range motion. Furthermore, if the barriers to the appropriate motions are not too high the 
resulting diffusion can be very fast [6]. 
 The above mechanisms are concerned with diffusion in regions where the regular 
lattice structure breaks down. They involve line or surface discontinuities in the crystal. It is 
clear that diffusion should occur more easily in the open regions of the crystal at dislocations, 
grain boundaries and surfaces. However, the detailed atomic paths in each case will depend 
on the particular atomic configurations at each line or surface defect. Thus these mechanisms 
do not lend themselves easily to the detailed kinetic analysis. Since the number of 
dislocations, grain boundaries and surfaces is more or less independent of temperature, 
diffusion by these mechanisms might be expected to have smaller temperature dependence 
than that for mechanisms involving point defects whose concentration increases with 
temperature. Line and surface mechanisms are relatively important at low temperatures but 
usually are not so important at high temperatures. 

3 Defect formation, Motion and Diffusion Coefficient 
 All the diffusion mechanisms are thermally activated. So at thermal equilibrium the 
probability of an imperfection being at a given site is proportional to a Boltzman factor 

RTE fe /−  where fE  is the defect formation energy, R  the universal gas constant and T  the 
absolute temperature. Due to thermal energy when an atom jumps into a neighbouring site for 
any type of mechanism, the path of its motion passes through a region of maximum energy. 
This is the saddle point or activated position. The difference between the Gibbs’ free energy 
of the crystal when the atom is at a lattice site can be related to the jump frequency as 

RTE
m

me /)0( −=νν . Here )0(ν  is the vibration frequency of an atom about its equilibrium 
position in the jump direction and mE  the defect migration energy. For a defect mechanism 
the jump frequency of an atom to a given neighbouring site is simply the product of jump 
frequency mν  if the defect is in the given site and the probability of a defect being at that 
given site. If there are n  near neighbours around the defect the total jump frequency ν  is 
given by RTQen /)0( −= νν , where mf EEQ +=  is the activation energy for diffusion. Since 
no defect is required for diffusion by exchange or ring mechanism fE  equals zero there. 
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 The diffusion coefficient D  can be defined from the proportionality condition of flux 
of atoms per unit area in a specified direction ( J



) and the concentration gradient at that 
direction ( c∇



), which is Fick’s first law or cDJ ∇−=


. A minus sign appears because the 
flux usually is in the direction of decreasing concentration. Combining it with the continuity 
condition we get Fick’s second law or )()/( cDtc ∇⋅∇−=∂∂



. This differential equation may 
be solved for various boundary conditions. 
 Three types of diffusion coefficients may be defined. (i) Tracer diffusion coefficient is 
the basic and is directly related to the atomic jump frequencies in an otherwise homogeneous 
crystal. (ii) Intrinsic diffusion coefficient is obtained when some driven forces are present. 
(iii) Interdiffusion coefficient depends on rate of mixing of two different elements. However, 
we shall consider only the first one where the tracer atoms may be of same kind (self 
diffusion) or different (impurity diffusion). Self and impurity diffusion coefficients obey 
temperature dependent Arrhenius equation RTQ

S eDD /
0

0−=  and RTQ
I eDD /

2
2−= . Here 0  and 

S  refers to the pure solvent and the subscripts 2  and I  apply to a solute property. 0D  and 

2D  are the pre-exponential factors and, 0Q  and 2Q  are the corresponding activation energies. 

4 Correlation factor 
 Diffusion takes place by the diffusing atom following a series of jumps from site to 
site. If the jumps are random the path followed by each atom during diffusion may be 
described as a random walk. The random walk equations apply strictly to diffusion by an 
interstitial mechanism, but with appropriate correlation factor may be applied to diffusion by 
other mechanisms. Applying the position probability and Einstein diffusion equation, we 
obtain the diffusion coefficient as 6/2 frD ν= , where r  is the jump distance, ν  the jump 
frequency and f  the correlation factor defined as ><∑+= iif θcos21 , iθcos  being the 
cosine of the angle between the first jump and the ith following jump. The value of 

>< iθcos  is not always zero and for vacancy mechanism i
i >>=<< θθ coscos  and so 

)cos1/()cos1( 11 ><−><+= θθf . For self diffusion in cubic metals the probability of jump 
is a numerical constant independent of temperature, i.e. 78146.00 =f (for, e.g., fcc metals). 
The probability for impurity diffusion depends on relative jump frequencies of the 
neighbouring solvent atoms relative to the values in absence of the impurity. After an 
impurity-vacancy exchange the vacancy may either re-exchange with the impurity atom or 
exchange with a neighbouring solvent atom. Even after the solvent-vacancy exchange the 
vacancy may eventually return and exchange with the impurity and also it may happen for 
other solvent sites. So partial correlation factor, )( pf  can be taken into consideration for the 
effective escape frequency. pf  is the fraction of vacancies making 3ν  jumps that effectively 
do not return to the site from which the 3ν  jump was made (figure 2). So the final expression 
for impurity correlation factor is   
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Figure 2 Vcancy jump frequencies in the vicinity of the impurity [Pure FCC lattice atom 
(Blue circles), Substitutional impurity (Red circle), Vacancy (White square)]. 

 
When 04 νν << , 1=pf ; for 04 νν ≈ , 75.0=pf ; and for 04 νν >> , 29.0=pf . Since 1ν , 2ν  
and 3ν  are of Arrhenius type so 2f  is a temperature dependent function. Lidiard [7], LeClaire 
[8] evaluated the correlation factor for different kind of mechanisms for self and impurity 
diffusion. Manning [9] has extended the derivation including the 4ν  jump. For the fcc lattice 
four different jump frequencies for the vacancy near an impurity atom may be defined. As 
shown in figure 2, 1ν  is the frequency of exchange of a vacancy neighbouring an impurity 
atom with any of the four solvent atoms those are also neighbours of the impurity; 2ν  is the 
frequency of exchange of the vacancy and the impurity atom; 3ν  is the frequency of 
exchange of a vacancy neighbouring an impurity with any of the seven solvent atoms 
adjacent to the vacancy but not neighbours of the impurity (dissociation jump); 4ν  is the 
frequency of association jump (reverse of a 3ν  jump) and all other jumps are assumed to take 
place with a frequency 0ν  which is the frequency of solvent-vacancy exchange. Serious 
impurity diffusion models must include these correlation effects. The difference in activation 
energy for impurity and self diffusion is also related to this temperature dependent correlation 
factor according to this relation. 
   CEEQQQ mf −∆+∆=−=∆ 02       (2) 

Where   
)(

ln
1

2

T

fRC
∂

∂
=          (3) 

fE∆  is the difference between the formation energies of a vacancy in the near neighbour 
position to that of a solvent atom. mE∆  is the change in migration energy for solute and 
solvent motion in the pure solvent. Two limiting cases for the calculation of C  are possible: 
  Slow diffusion   012 =⇒→ Cf  
  Fast diffusion   002 <<⇒→ Cf      (4) 
 Thus for slow diffusion a direct comparison of theory and experiment is possible, 
while for fast diffusion entropy contribution must be estimated. Fast diffusion is observed in 
polyvalent metals (Pb, Sn, In, Tl) or very electropositive metals (Li, Na, K) with monovalent, 
divalent or transition metal impurities. In fast diffuser systems the impurity diffusivity is 
some order of magnitude higher than the host diffusion and it increases with decreasing 
solubility. 

5 Isotope effect 
 Correlation factors can be determined from isotope effect measurements. Two 
isotopes of a given element, because of their difference in mass will not have exactly the 
same diffusion coefficient. The mass difference causes their vibrational frequencies to differ. 
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According to classical rate theory the vibrational frequencies and hence the jump frequencies 
should be inversely proportional to the square root of masses. For two isotopes i  and j  of 
the same element we have ijji mm // =νν . But for diffusion of substitutional atoms we 
wave to use the reduced mass, which includes the effects from masses of neighbouring atoms. 
These neighbouring atoms must move to allow a diffusing atom to pass through the saddle 
point in its jump. Also after the jump was made, these atoms may have moved to a slightly 
different location from that occupied before the jump. The introduction of reduced mass 

modifies the mass-frequency relation as   ]1[1 −∆=−
i

j

j

i

m
m

K
ν
ν

  (5) 

Here K∆  is the fraction of the translational kinetic energy that is possessed by the jumping 
atom as it crosses the saddle point. Hence K∆  is bounded by zero and unity. For both 
isotopes and for same jump distance we have 
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 In special case where each jump vector lies along an axis of at least two or threefold 
symmetry as in cubic crystals the effective solvent jump frequencies for both isotopes are 
same because they are unaffected by the mass of atoms executing 2ν  jumps. So equation (6) 

can be written as    
j

ji
i

j

ji f
D

DD
ν

νν −
=

−
     (7) 

Combining it with equation (5) we get  1]1[Δ −=−
j

i

i

j
i D

D
m
m

Kf     (8) 

The value of K∆  can be assumed to be same for self and impurity diffusion. This quality of 
kinetic energy factor is supported by theoretical investigation on the basis of the dynamical 
theory of diffusion. Experimentally it was that 2K∆  for impurity diffusion does not depend 
on the impurity mass. 

6 Enhancement Factor 
 The presence of impurity atom may appreciably change the jump frequencies for 
solvent atoms neighbouring the impurity atom (i.e. 

0

1
ν
ν , 

0

3
ν
ν  and 

0

4
ν
ν  may be different from 

unity). Lidiard [10] was first to correctly derive the average solvent atom jump frequency in 
terms of various jump frequency iν ’s. Assuming that all solvent jumps have a correlation 0f  
as in the pure solvent, the self diffusion in dilute alloys with solute concentration Ic  can be 
expressed by 
    )1()( 1 ISII cbDcD +=        (9) 
Here subscripts I  and S  are for impurity and host diffusion respectively. Higher order terms 
of Ic , result from the overlapping of influence spheres of solute atoms with raising 
concentrations. Howard and Manning [11] reanalyzed this problem and removed the 
assumption that all solvent jumps occur with a correlation factor 0f . There are twelve types 
of solvent jumps near an impurity occurring with frequencies 1ν , 3ν  and 4ν , i.e. different 
from 0ν . Each of these twelve jumps has a partial correlation factor pif . There are four 
possibilities for 1ν  jump and seven for 3ν  jump (figure 2). The contribution from 4ν , jumps 
are just reverse of 3ν  jump and there are seven possible 4ν  jumps for every site neighbouring 
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an impurity. The contribution of these jumps to the average effective jump frequency of the 
solvent atoms equals the jump frequency multiplied by the probability that a vacancy is 
created next to an impurity. When the impurity is absent the contribution to effective jump 
frequency is )11(12 000 νfcP Iv . But for the presence of the impurity the contribution would be 
modified to 
  )77(12)74(12 004403311 νννν ffcPffcP pIvppIvI −++  

Here RTE
vvI

fePP /
0

∆−= . fE∆  has been defined earlier and 0vP  is the probability that a site far 
from any impurity is occupied by a vacancy. This change to the jump frequency contribution 
for the presence of the impurity is related to the enhancement factor 1b  according to the 
relation 
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Here it is assumed that divacancies do not form and each impurity remains isolated from 
other impurities. The total numbers of associative jumps are same as dissociative jump 
numbers. So 
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This is the expression for enhancement factor 1b  for FCC metals. Analogous relation exists 
for BCC solvent metals. 

7 Different theoretical diffusion models : Indirect diffusion model 
 The difference between the activation energies for impurity and self diffusion Q∆  has 
been calculated by different theoretical approaches. The electrostatic theory first proposed by 
Lazarus [12] and later modified by LeClaire [13] has provided further insight into the 
diffusion process. However, this is an indirect phenomenological model. Here a very brief 
representation of LeClaire theory for impurity diffusion in FCC lattice will be given. It 
utilizes the five frequency model where the ratio for impurity and self diffusion coefficient 
can be written as 
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Here iν ’s are related according to the relation 
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Especially, mm EE ∆=∆
2

 has been defined earlier in equation (3.10). 
imE ’s are migration 

energies for different kinds of jumps. We can calculate the temperature dependent correlation 
factor using above equations as
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The term Q∆  can be determined by calculating fE∆ , mE∆  and other 
imE∆ ’s and finally C  

from equation (16). Calculations have been done using electrostatic interaction between 
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impurity and vacancy from Thomas-Fermi potential when a vacancy is created and at saddle 
point configuration when a vacancy is migrated. Details of these different terms were given 
in LeClaire [13]. The disadvantage of this method is that experimental values of 2D  and 0D  
must be used in the C  determination. 

8 Direct diffusion model 
 A direct calculation of Q∆ , has also been proposed in a thermodynamical model by 
Neumann [14-15]. Here it is assumed that the interaction energies of impurities and host 
atoms are additively composed of those of pure components. The melting temperatures are 
considered to be a measure for the binding of the pure metal and Morse function was used. 
The expressions used in this model calculation are 
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Where 
RT

E HT
Tβ−

=
1

, 
)(
)(

0

HT
T∂

∂
−= µ

µ

β  and HTT 85.0= . Hm  and Im  are the masses and, HT  and IT  

are the melting temperatures of the solvent and the impurity respectively. The factor β  
represents the temperature dependence of the shear modulus, 0µ  being the shear modulus at 
absolute zero. The advantage of this method is that it is independent of individual 
experimental errors in 2D  as well as in Q∆ . Hm  and Im  are the masses and, HT  and IT  are 
the melting temperatures of the solvent and the impurity respectively. The factor β  
represents the temperature dependence of the shear modulus, 0µ  being the shear modulus at 
absolute zero. The advantage of this method is that it is independent of individual 
experimental errors in 2D  as well as in Q∆ . 

9 Pseudopotential diffusion model 
 Uptil now the above mentioned two methods can explain the most of the diffusion 
phenomena in FCC lattice. However, the models are strictly applicable for monovalent 
metals; but for polyvalent metals the effect of exchange and correlation should be taken into 
consideration. The effect of relaxations of the neighbours during migration should also be 
considered. It is possible to include all of them using the framework of pseudopotential 
theory of Harrison [16] for the host and impurity atom. The expressions for fE∆ , mE∆  
including RE∆  (the relaxation effect) were formulated to account for Q∆  [17]. The total 
energy of a metal per ion consists of structure dependent and volume dependent terms. The 
structure dependent terms consist of ion-ion interaction, which is electrostatic energy term 
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)( esE  and ion-electron and electron-electron interactions, i.e. band structure term )( bsE . As 
all defect calculations are done at constant volume the change in structure factor due to 
formation or movement of defects is reflected in the associated change of energy parameter. 
The activation energy of self diffusion 0Q , which consists of H

esE  and H
bsE  ( H  denoting host 

atom) can be regrouped so that it is possible to separate out fHE , mHE  and RHE  of the 
vacancy. Similarly 2Q  can be separated into three parts where form it is possible to find 
expressions for fE∆ , '

mE∆  and RE∆ . So the modified form of Q∆  with its respective terms 
are given by [18,19] 

 

 
Figure 3 Diffusion via vacancy mechanism: (a) vacancy at V and migrating atom at near 
neighbour position M; (b) [i] activation state A for the migrating atom M with relaxation of 
four near neighbours around the activation state A, [ii] migration energy versus distance plot. 
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Hz  is the valency of this solvent metal, z∆  the valency difference between solvent and 
solute, HΩ  the atomic volume, η  the convergence factor, e  the electronic charge, HF   and 

IF  are the energy wave number characteristics of the host and impurity atoms respectively, 

vr
 , Ir

  and ar
  are the position vectors for vacancy, solute atom and the activated position 

respectively. Finally δ




+= jj rr ' , δ


 being the relaxation of n  near neighbours having 
position vectors jr  surrounding the activated position of the migrating atom. The total change 

in migration energy is the sum total of '
mE∆  and RE∆ . Temperature dependence of 

correlation factor C  can be determined using either equation (16) or equation (19). For 
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homovalent impurities )0( =∆z  it can be assumed that the correlation factor tend to a 
geometrical constant, independent of temperature and C  approaches zero. 

10 Different Experimental Methods : Steady State methods 
 Self and impurity diffusion data have been analyzed in different ways. Many 
experimental studies on diffusion have been carried out during last few decades [20]. These 
different techniques are classified in mainly three categories (i) Steady state methods, (ii) 
Non steady state methods and (iii) Indirect methods. 
 Steady state methods are based directly on Fick’s first law. The usual procedure is to 
maintain concentrations of the diffusant on the opposite sides of a sample, which is usually a 
thin sheet or thin walled tube and to measure the resulting steady rate flow. This is generally 
practicable only when the diffusing element is a gas or can be supplied to and removed from 
the sample through a vapour phase. There are mainly three ways for the measurements in 
steady state methods. 
 (a) Steady concentration distribution within the sample is measured to determine 
D . 
 (b) Average gradient calculation from equilibrium data where the surface 
concentrations 1c  and 2c  in equilibrium with the ambient atmospheres are known and so 
average D  over this concentration gradient can be determined. 
 (c) Time delay method (measurement of time to reach steady state) is used to 
determine D . These methods are used for measuring D  for interstitial solute diffusion. The 
Kirkendall effect makes these methods complicated for their reliable application to 
substitutional diffusion. 

11 Non-steady State methods 
 In non steady state methods the change in concentration distribution in a sample as a 
result of diffusion is measured and D  is calculated from a solution of Fick’s second law with 
proper boundary conditions of the experiment. There are three common types of experimental 
arrangements two of which are usually employed in chemical diffusion measurements and the 
third in the measurement of tracer diffusion coefficients. 
 (a) In diffusion couple method two metals or two different alloys are brought into 
intimate contact across a plane interface. Diffusion is allowed to take place by annealing at a 
constants temperature and for a fixed time. The distribution of concentration in the sample is 
then determined in some convenient manner often by removal and subsequent analysis of a 
succession of thin layers cut parallel to the initial interface. It is usually arranged such that 
two halves of the couple are sufficiently thick and the diffusion zone does not extend to either 
end. D  generally varies with concentrations. So, D , can be calculated from concentration 

)(c - distance )(x  curve or from an analytic solution. There are several ways to determine D  
in this method. 
 (b) In-diffusion and out-diffusion methods allow the materials to diffuse into or 
out of an initially homogeneous sample of concentration 1c  under the condition that the 
concentration at the surface is maintained at a constant and known value 0c  by being exposed 
to a constant ambient atmosphere. 1c  is usually zero for in-diffusion experiments and 0c  for 
out-diffusion experiments. Generally three ways are employed in these experiments. D  may 
be calculated from a measurement of either of the total amount of material taken up by or loss 
from the sample. It may be calculated from the concentration distribution within the sample 
after diffusion or may be calculated from rate of movement. 
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 (c) Thin layer methods are used almost exclusively for the measurement of self 
and tracer D ’s. A very thin layer of radioactive diffusant of total amount g  per unit area is 
deposited on a plane surface of the sample. After diffusion for time t  the concentration at a 

distance x  from the surface is Dt
x

exc
Dt

g 4

2

)( −=
π

, provided the layer thickness is very much 

less that Dt . This condition is easy to satisfy because extremely small quantities suffice for 
studying the diffusion on account of the very high sensitivity of the methods of detecting and 
measuring radioactive substances. For the same reason there is a negligible change in the 
chemical composition of the sample; so D  is a constant and Fick’s second law can be 
applicable. Tracer techniques are classified into mainly three categories. 
 (1) In residual activity method the diffused specimen is subjected to a series of 
sectioning operations. The layers of thickness x , are removed by lathe sectioning, grinding, 
etching or anodizing, but the total remaining activity (residual activity), emanating from each 
newly exposed surface of the sample are measured. A plot of logarithmic activity and 2x  
gives the value of D . 
 (2) In surface decrease method the total activity of the specimen is measured as a 
function of time. No sectioning is necessary. A plot of activity at 0=x  with time yields the 
value of D . 
 (3) Serial sectioning method of analysis is most commonly used in the study of 
diffusion. The diffusion specimen is subjected to a series of sectioning operation after 
diffusion. To determine the thickness of the material removed, the specimen is weighed 
before and after each cut. The cuttings are collected and their activity measured with a 
Geiger-Muller counter or a scintillation counter. A plot of logarithmic count rate versus 2x  
yields the slope Dt4

1  for volume diffusion and hence D  can be calculated if annealing time is 
known. An alternative auto radiograph method uses a single section cut along or obliquely to 
the diffusion direction to obtain such a plot. A recent development has been the use of the 
electron microprobe to measure even impurity diffusion coefficients. 
 The methods (1) and (2) are generally regarded as less reliable because they obviously 
also necessitate a knowledge of the absorption characteristics of the radiation concerned. The 
main advantage of method C is that it is simple, direct and does not depend on the properties 
of the radiations from the radioactive material used. So it is reliable and accurate method for 
diffusion analysis. 

Table 1 
Different indirect methods 

Methods Remarks 
1. Internal friction Stress induced redistribution of atoms is used. 
2. NMR study Diffusional narrowing of resonance lines and atomic mobility 

to spin lattice relaxation time are used. 
3. Magnetic relaxation Mainly Mossbauer studies. 
4. Sintering process  
5. Positron and muon 
annihilation study 

Study of defects, mainly vacancies. 

6. Perturbation angular 
correlation study (PAC) 

γ -rays emitted during decay of radioactive atom adjacent to a 
defect produces a unique change in PAC signal. 

7. X-ray or neutron 
    scattering study 

Distortions around a defect are studied. 
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8. Ion channeling 
    experiment 

α - scattering  are analyzed by standard pulse height analysis 
method. 

9. Electron microscope 
    observations (both 
    TEM and SEM) 

Types of defects, its formation, motion, etc. can be analyzed. 
Thin film grain boundary diffusion can be studied. 

10. Ultrasonic study Ultrasonic attenuation and velocity measurement as a 
function of polarization, frequency, temperature and defect 
density display different types of defects. 

11. Resistometric method Electrical resistance measurement. 

12 Indirect methods: A Special case :- Resistometric method 
 In addition to microscopic diffusion there are a number of other phenomena in solids 
which depend for their occurrence on the thermally activated motion of atoms and are called 
indirect methods. From suitable measurements made on some of these phenomena it is 
possible to determine D . Some advanced techniques can be found in the proceedings of point 
defects and defect interactions in metals [21]. Table 1 shows all such methods. Here in this 
paper a brief review of resistometric method will be discussed in the next section. 
 Among the several experimental techniques employed for studying diffusion in metals 
as mentioned in the last section the method involving electrical resistivity measurements is 
one of the oldest. Due to development of direct methods like radioactive tracer technique the 
resistivity method has been confined only to particular diffusion problems, such as diffusion 
in semiconductors and diffusion of point defects in quenched, cold worked or irradiated 
metals. An alternative method of diffusion study using resistometric technique was first 
suggested by Cerecera where the diffusion equation was solved numerically for the selected 
experimental conditions in dilute solid solutions of Zn in pure Al [22] and Cu in pure Al [23]. 
This was found to be useful especially when a stable radioactive tracer of any element is not 
available. In fact, the reliability and sensitivity of this method has been tested several times 
viz. for the impurity diffusion of tin in copper and lead in silver [24]; iron in copper within 
the temperature range of 790°C to 1000°C and nickel in silver within 750°C to 920 °C [25]; 
nickel in copper and copper–nickel alloys within 780°C to 1037°C [26]; zinc in copper and 
silver [27]. So it seems worthwhile to review this method. Sen and Ghorai [17] used one of 
the most complicated members of the simple metal group lead; more so in view of its fast 
diffusion for several systems. An interstitial configuration of nickel in lead was suggested in 
a centrifuge study [28]. But it is generally agreed that vacancies play the key role for impurity 
diffusion in FCC metals. Although diffusion of tin in lead does not fall into fast diffusion 
category so that it might still be considered as vacancy controlled diffusion; its study itself is 
of interest because only few measurements of diffusion of tin in lead have been done. The 
measurements of diffusion of tin in lead by Seith and Laird [29], Decker et. al. [30] and Mei 
et.al. [31], were all using radioactive tracer technique; so resistometric method is specially 
useful and interesting in this case. 

13 Theory of resistometric method 
 Let us consider a long circular cylinder in which the diffusion is everywhere radial. 
The diffusion equation in this condition can be transformed to the one dimensional 

cylindrical coordinate system as  )(1
r
cDr

rrt
c

∂
∂

∂
∂

=
∂
∂     (26) 

Here c  is the concentration of diffusing element at time t , r  the radial distance from the axis 
of the cylinder and D  the diffusion coefficient. The boundary condition to the problem where 
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a film of diffusing substance is deposited on the surface of the cylinder of radius a  and then 
let to diffuse inside are 
A. Case I At 0=t   =∝c   at  ar =  
        0=   between 0≥> ra  
B. Case II Within <∝< t0  =c finite within  ar ≤≤0  

     0=
∂
∂
r
c  at  ar =  

C. Case III At →∝t   fcc →  within  ar ≤≤0  
 These conditions assume that there is no flux of atoms escaping from the surface. 
Assuming D  to be constant for dilute alloys, the solution of equation (26) satisfying the 
above conditions can be obtained in terms of ordinary Bessel function of the first kind and 

zero order 0J  as   
)(

)(
1),(),(

0

0

1

2

n

n

nf J
exJ

c
xcxy

n

α
αττ

τα−∝

=
∑+==   (27) 

Here two dimensionless quantities x  and τ  are 

  
a
rx =   and  2a

Dt
=τ      (28) 

nα  are the positive zeros of the Bessel function of order one such that 0)(1 =nJ α . 
 To connect ),( τxy  with the change in resistivity data for diffusion the wire can be 
regarded as consisting of a series of coaxial cylinders having cross section rdrπ2  and the 
resistivity   )(100)( 0 rcr αρρ +=       (29) 
Here 0ρ  is the resistivity of the pure base metal, α  the increase in resistivity due to 1% of 
the diffusing element. The total resistance of the wire is given by (case of parallel conductors) 

   )(2
)(100

21

0

2

00
τ

ρ
π

αρ
π Ia

rc
rdr

R

a

=
+

∫=      (30) 

Where  
),(1

)(
1

0 τ
τ

xy
xdxI

+
∫=   and  

0

100
ρ
α fc

y =    (31) 

 To compare the theory with experimental data it is useful to introduce the normalized 

function )(tφ  defined as follows  
if

it

RR
RR

t
−
−

=)(φ     (32) 

Here iR , fR  and tR  are the resistive values of the specimen before, at the end of the 
diffusion process and after diffusion time t  respectively. The corresponding theoretical 
function )(τφ  can be easily calculated from equation (30) as 

 ]1
)(2

1[1)( −=
τ

τφ
Iy

   - (33) 

Here the relations for iR , fR  and y  are 

 2
0

a
Ri π

ρ
=  2

0 100
a

c
R f

f π
αρ +

=  and 
i

if

R
RR

y
−

=     (34) 

 The theoretical values of )(τφ  for different values of y  have already been calculated 
by Ceresara et. al. [22]. By comparing theoretical )(τφ  and experimental )(tφ  at temperature 
T  it is possible to find out the diffusion coefficient D . This procedure is known as 
isothermal annealing procedure. 
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 There exists another method known as step-annealing procedure, in which y  can be 
determined from comparison of theoretical and experimental φ ’s. The diffusion coefficients 
at different temperatures can be obtained using equation (28) as 

  
i

i

ii

ii
iii

i
ii

a
tt

a
Dtt

a
D

θ
τττ

ττ
∆

=
−

−
=⇒−=−

−

−
−−

2

1

1
2

121
)(

)(    (35) 

Where  1−−=∆ iii τττ   and  1−−= iii ttθ     (36) 

iθ  denotes the ith annealing time at temperature iT . Since choice of origin of time is quite 
arbitrary this method enables us to measure the diffusion coefficient iD  from equation (35) 
provided the resistance value before diffusion annealing at temperature iT  is known in order 
to calculate )( 1−itφ  and hence 1−iτ . Each of these iD  values obeys Arrhenius law 

     iRT
Q

i eDD
2

2

−

=       (37) 

2D  is the pre-exponential factor and 2Q  the activation energy for impurity diffusion. iT ’s are 
the different annealing temperatures. 

14 Procedure of Resistometric Method 
 In the experiment a spectral pure metal was drawn in the form of wire with diameter 
about 310− m and length about 5.0 m. It was annealed below the two-thirds of the melting 
point of the metal and then furnace cooled. The surface of the wire was etched to remove any 
oxide layer following which electroplating procedure was done quickly to avoid oxidation. 
The initial resistance iR  of the sample mounted inside a cryostat in helium atmosphere and 
immersed at liquid nitrogen contained in a glass Dewar was determined using Emrick’s 
circuit [32]. After this a series of consecutive short duration thermal treatments were 
performed and the increase in resistance thereby after each annealing process was measured 
at liquid nitrogen temperature until a final stable resistance fR  was reached. A dummy 
resistance was used for any slight variation of liquid nitrogen temperature. In case of 
diffusion of tin in lead [17] diffusion anneal was performed in the temperature range of 

C195  to C322  and the value of y  was obtained as 182.0  from equation (34) using 
experimental value of iR  and fR . Utilizing this value of y  a theoretical graph of )(τφ  
versus τ  has been plotted and the corresponding graph has been shown in figure 3. The 
experimental values of )(tφ  have been determined from equation (32). The corresponding 
values iτ  have been determined from figure 3. So it is now possible to find the values of iD , 
the diffusion coefficient from equation (35). The usual plot of Dlog  versus 1−T  obeys 
Arrhenius law and the values of pre-exponential factor 2D  and activation energy 2Q  have 
been determined )03.1,/1029.0( 2

24
2 eVQsmD =×= − and compared with those of some 

earlier measurements )997.0,/1016.0( 2
24

2 eVQsmD =×= − [29], 
)03.1,/1041.0( 2

24
2 eVQsmD =×= − [30], along with self diffusion values 

)106.1,/1088.0( 0
24

0 eVQsmD =×= −  [33], )132.1,/1014.0( 0
24

0 eVQsmD =×= −  [34] and 
)075.1,/107.0( 0

24
0 eVQsmD =×= −  [35] shown in table 2. 
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Figure 3 Theoretical plot of )(τφ  versus τ  for the determination of iτ  corresponding to 
different temperatures shown in the graph. 
 

Table 2a 

Metal Z1 a Å1 CTm° 1 v
FE1  eV v

ME1  eV3 v
BE2  eV 0Q  eV7 D0(×10-

4m2/s)7 cohE eV1 

Cu 1,2 3.61 1083 1.133, 1.194, 1.284 0.95 -0.34 2.186 0.78-0.2 -3.49 

Ag 1 4.08 960.8 1.023, 1.114 0.80 -0.19 1.921 0.67-0.44 -2.95 

Au 1,3 4.07 1063 0.903, 0.894, 0.934 0.85 -0.16 1.808 0.091 -3.81 

Ca 2 5.57 838 1.105  -0.25 1.67 8.3 -1.84 

Sr 2 6.05 768      -1.72 

γ -Fe 2,3 3.56 1536 1.406   2.943 49 -4.28 

β -Co 2,3 3.54 1495 1.346   2.775 0.23 -4.39 

Rh 2,3,4 3.80 1966      -5.75 

Ir 2,3,4,6 3.83 2454      -6.94 

Ni 2,3 3.52 1453 1.453, 1.556, 1.794, 
1.784 1.43 0.33 2.914 1.27 -4.44 

Pd 2,4 3.88 1552 1.543, 1.704, 1.854   2.758 0.205 -3.89 

Pt 2,4 3.92 1769 1.303, 1.354, 1.324 1.37 -0.20 2.952 0.33 -5.84 

Al 3 4.04 660 0.663 0.64 -0.19 1.474 1.71 -3.39 
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La 3 5.31 920    1.956 1.5 -4.47 

Sc 3 4.53 1539      -3.90 

γ -Ce 3,4 5.161 735    1.587 5.5 -4.32 

Pr 3,4 5.15 935      -3.37 

Yb 3,2 5.47 824      -1.60 

Pb 4,2 4.95 327.4 0.50±.033, 0.58±.063  -0.23 1.11, 1.1310 0.99, 0.7, 0.88 -2.03 

Th 4 5.08 1750 1.28±0.233   3.105 395 -6.20 

Ne 0  -248.6       

A 0  -189.4      -0.08 

Kr 0  -157.3      -0.116 

Xe 0  -111.9      -0.16 

Rn 0  -71       
1Ref. [36], 2Ref. [20], 3Ref. [37][38], 4Ref. [39], 5Ref. [40], 6Ref. [41], 7Ref. [40], 8Ref. [42], 
9Ref. [43]. 
 
Table 2b 

Metal Z1 a Å1 CTm° 1 v
FE1  eV v

ME1  eV3 v
BE2  eV 0Q  eV7 D0(×10-

4m2/s)7 cohE eV1 

Li 1 3.49 453.7 0.488 0.0388  0.55, 0.59 0.125, 0.39 1.63 
Na 1 4.22 371 0.348 0.038  0.50, 0.44 0.72, 0.15 1.113 
K 1 5.22 336.3 0.348 0.0388  0.41 0.16 0.934 
Rb 1 5.58 312.6    0.41 0.23 0.852 
Cs 1 6.04 301.6 0.289     0.804 
Ba 2 5.02 1002      1.9 
Fe 2 2.87 1811 1.66     4.28 
Cr 2 2.88 2133 2.08, 2.278, 2.088 0.958  3.20, 4.57 1300, 0.2 4.1 
Mo 2 3.15 2895 3.08, 3.28, 3.0068 1.358  4.00, 3.48 0.1 6.82 
W 2 3.16 3695  1.708  6.64 42.8, 1.90 8.9 
V 3 3.03 2202 2.108 0.508  4.58 1280, 0.39 5.31 
Nb 3 3.3 2750 2.708 0.558  4.16 1.1 7.57 

Ta 3 3.3 3293  0.708  4.28 0.124 8.1 

Tl 3 3.87 577    0.87 0.7 1.88 

Eu 3 4.58 1091      1.86 

Zr 4 3.61 2128    0.85 0.000003 6.25 
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1Ref. [36], 2Ref. [20], 3Ref. [37][38], 4Ref. [39], 5Ref. [40], 6Ref. [41], 7Ref. [42], 8Ref. [43], 
9Ref. [44]. 

15 Conclusions 
 Finally in conclusion, out of several procedures for the determination of properties of 
self and impurity diffusion [45] only resistometric method has been discussed in details along 
with three different theoretical models for the bulk samples only and not for thin film 
samples. Different new mechanisms are observed in thin solid films of metals, bimetallic 
couples, semiconductors and insulators [46]. The so-called anomalous fast diffusion of 
metallic solutes has also been observed in a large variety of systems where the atomic size 
(Wigner-Seitz radius) ratio exceeds the limit of 0.59 and ranging from 0.62 and 0.93 [In fast 
diffusion impurity or solute diffusivity ID  in several binary systems is several orders of 
magnitude greater than that of the host or self diffusion SD  of solvent, i.e. SI DD >> ] and 
Herzig [47] gave one of the earlier reviews on fast diffusion.  Hosts here are semiconductors, 
Gr III and Gr IV metals (Pb, Sn In, Tl), alkali metals (Na, Li), lanthenides and actinides (Pr, 
U). Noble metals (Cu, Ag, Au), transition or Gr IIB elements (Zn, Cd, Hg) are the fast 
diffusing impurities. Interstitial mechanism, Interstitisl-vacancy pair mechanism and diplon 
mechanisms are prescribed for it so far [48]. 
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