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Abstract
We numerically investigate random walks (RWs) and self-avoiding random walks (SAWs) on critical
percolation clusters, basic models for diffusion and flexible polymers in disordered media. While this
can be easily done for RWs using a simple enumeration method, it is difficult for long SAWs due to
the long-range correlations. We employed a sophisticated algorithm that makes use of the self-similar
structure of the critical clusters and allows exact enumeration of several thousand SAW steps. We also
investigate a kinetic version of the SAW, the so-called kinetic growth (self-avoiding) walk (KGW), as
well static averaging over all RW conformations, which describes the so-called ideal chain. For the
KGW, we use a chain-growth Monte Carlo method which is inspired by the pruned-enriched Rosen-
bluth method. The four walk types are found to be affected in different ways by the fractal, disordered
structure of the critical clusters. The simulations were carried out in two and three dimensions.

1. Introduction
Percolation clusters are a simple model for disordered media such as porous rocks or biological
cells [1, 2]. It is easiest to consider a square or cubic lattice with some randomly removed sites (“de-
fects”). Most intriguing is the case where the concentration of sites that are no defects is at the critical
percolation threshold, so that a lattice-spanning (“percolating”) cluster can just barely exist. Such crit-
ical percolation clusters (CPCs) are highly irregular on all length scales (see Fig. 1, left) and have a
non-integer Haussdorff dimension that is smaller than the embedding Euclidean dimension. This fractal
nature has interesting consequences for random walks (RWs) taking place on the clusters. This model,
known as the “ant in the labyrinth” [3] is often used to characterize diffusion in disordered media [4].
While random walks on regular lattices spread with the square root of the number of steps, the scaling
exponent of the root mean square displacement is known to be reduced on critical clusters:

[√
〈R2〉

]
∼ Nν′

RW , ν ′RW < 1/2. (1)

The square brackets denote the quenched disorder average over all percolating cluster configurations.
Self-avoiding walks (SAWs) on CPCs have also widely been studied. They are a simple model for

polymers in disordered environments [5]. Here, too, the scaling behavior of the mean square end-to-end
distance (the analogue to the mean square displacement) is altered due to the fractal disorder; see for
instance [6–9]. Interestingly though, the exponent ν ′SAW on the critical cluster is larger than on regular
lattices.

There is a fundamental difference between those two models besides the excluded volume con-
straint for the SAW, namely the different statistical ensembles considered. The RW is regarded as a
kinetic process where the next position is chosen uniformly from all available neighbors. In a random
environment, different trajectories therefore have different probabilities, which are given by the inverse
product of the number of available neighbors in each step. The mean square displacement expressed as
an average over all trajectories thus reads:
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with mi denoting the number of available neighbors at step i. For the SAW on the other hand, we
consider a static equilibrium average, where each conformation (trajectory) contributes equally. As a
kinetic process, this would be described by a random walker that is absorbed whenever it steps on a
defect or visits any site twice.

To complete the picture and allow for a sounder comparison, we investigate not only the RW and
the SAW but also a random walk with uniform trajectory weights, the so-called ideal chain (IC) [10],
as well as a kinetic version of the SAW, the so-called kinetic growth walk (KGW) [11]. The IC can be
regarded as a polymer without excluded volume or as a random walker that is absorbed whenever it
hits a defect. Note that the RW and the IC are identical on lattices without defects and with constant co-
ordination numbers. The conformational average for the KGW looks the same as for the RW (Eq. (2)),
but visited sites are not counted as available neighbors. However, the analogy to the diffusive RW is
not perfect, as the KGW has the slight oddity that the walker can get trapped (see Fig. 1, right), in
which case it is absorbed. It is like an ant trying to find its way through a labyrinth using the clue to
avoid taking the same path twice and giving up when it has no other choice. The definition of the four
different models are summed up in Table 1 below.

Table 1: Summary of the four different walk types.

properties: not self avoiding self-avoiding
diffusion RW KGW
statistics
(kinetic)

Step rule: choose next position from
non-defect neighbors.

Step rule: choose from non-defect and non-
visited neighbors; absorbed if none available

Trajectory weights: (
∏
imi)

−1. Trajectory weights: (
∏
imi)

−1

polymer IC SAW
statistics
(static)

Step rule: choose from all neighbors; ab-
sorbed at defects.

Step rule: choose from all neighbors; ab-
sorbed at defects and visited sites.

Trajectory weights: uniform. Trajectory weights: uniform.
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Figure 1: Left: Incipient cluster at percolation threshold. Colors show largest regions where each site is connected
to at least two sites of the same region (bi-connected components), the largest being the cluster’s backbone.
Right: Kinetic growth walk (or SAW) that has got trapped.

2. Methods
To estimate the quenched average, we randomly create a large sample of CPCs and determine the aver-
age over all walk trajectories on each of them. The clusters are generated with the Leath method [12],
which is based on a depth-first “burning” routine and works in the following way: Each lattice site can
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either be occupied (“1”), empty (“−1”), or unknown (“0”). At the beginning, all sites are 0 except for
one “seed” site, which is always 1. The burning starts at the seed, and a random number is drawn for
each neighboring unknown site in turn. If the number is larger than the occupation probability p, the
neighboring site is set to−1. Else it is set to 1, and the routine calls itself starting at the neighboring site.
The program finishes once there are no more neighboring unknown sites, i.e., when all neighbors of
the cluster are −1. A cluster is considered percolating (“incipient”), if it wraps around the system in at
least one dimension (we assume periodic boundary conditions). For our simulations, only percolating
clusters were used.

The challenging part is determining the averages over all trajectories of a given length. Here we
used different numerical methods depending on the walk type. Those without self-avoidance (RW and
IC) are easy to handle with exact enumeration [4, 13]. For the self-avoiding walks (SAW and KGW),
this is difficult due to the long-term memory of the processes. We recently developed a method which
exploits the fractal nature of the critical cluster and allows for very efficient exact enumeration of (nor-
mal) SAWs [14]. As there is no efficient way to enumerate the KGW trajectories, we had to resort to
Monte Carlo simulations for this case. The method we used is much like the pruned-enriched Rosen-
bluth method (PERM) used for normal SAWs [15]. In the following, each method will be introduced
briefly; more detailed descriptions can be found in the referenced works.

As a Markov process, the simple random walk can easily be studied with exact enumeration. This
is because the probabilities for finding a walker on any site ~ri after N steps can be calculated from the
probabilities after N − 1 steps:

P (~ri, N) =
∑
n

P (~rn, N − 1)W (~rn → ~ri),

where the sum goes over all neighbors of ~ri and the transition probabilities, W (~rn → ~ri), are given by
the inverse of the number of available sites adjacent to ~rn. The method can also be understood in terms
of Markov matrices acting on the probability state vector.

For the IC, the procedure is essentially the same, but we calculate the number of trajectories ending
at each site instead of probabilities. The transition rates in this case are simply 1.

The straightforward enumeration method for SAWs is to use brute force and generate all possible
conformations; see [7,16,17]. However, their number increases exponentially with the number of steps,
and so does the computational effort. Fortunately though, the fractal structure of the CPCs offers a way
to circumvent this problem [14]. The actual implementation of this method is rather complicated and
will not be explained here, but the basic ideas are fairly simple. The key lies in the observation that
the critical clusters are very weakly connected, so that they could be divided by cutting only a small
number of bonds. Thanks to the self-similarity, this applies on all length scales. We can therefore
partition the cluster into a hierarchy of nested “blobs” with very few interconnections (see Fig. 2) in
order to factorize the enumeration:

Figure 2: Decomposition of a critical percolation cluster into nested blobs and corresponding tree hierarchy. The
SAW’s starting position is marked black (in blob A).
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We start by enumerating all SAW segments of any length through the smallest blobs and divide
them into different classes, depending on how they connect the different entries to the blob. For in-
stance, if a blob has two connections (a and b) to its parent in the hierarchy, we distinguish between
the following classes: segments starting at a and terminating within the blob, segments starting at b
and terminating in the blob, and segments connecting a and b. For the terminating segment classes, we
also measure the mean end distance to the origin. We then “renormalize” the smallest blobs, treating
them essentially as point-like while we repeat the procedure for the next larger blobs that contain them.
The new segments have then to be matched with the right segment classes from before to determine
their multiplicity and average end-point distances. This scheme is applied repeatedly going to ever
larger blobs and ultimately the whole cluster. Correctly implemented, this method achieves polynomial
(rather that exponential) increase of computation time with the number of steps, thus allowing for walks
of several thousand steps. It can be used in any dimension, but we have only very recently generalized
our implementation to more than 2D, so that the results on the 3D clusters are still very premature.
The SAWs can also be simulated with PERM as was done for instance in [8, 9]. However, the new
enumeration method is far more efficient; reliable results for more than a few hundred steps on a CPCs
could probably not be produced with PERM [18].

The above method works, so far at least, only for normal SAWs and not for KGWs, but fortunately
the latter can be treated quite easily and with reasonable efficiency using chain-growth Monte Carlo.
In principle, all one needs to do is to randomly generate a large set of trajectories according to the step
rule described before. The problem of this simple-sampling approach, however, is that the trappings
lead to exponential attrition. Even though the attrition rate is much smaller than it would be for normal
SAWs, it makes it hard to go to very long chains. To compensate it, we enrich the chain population by
doubling chains during the growth from time to time. To keep the statistics correct, each chain gets a
weight which is initially 1 and is halved each time a chain splits up. The splitting is triggered whenever
the weight is larger than a constant c> times W , the weight of all branches of the same length that
have been generated so far divided by the number of started chains. We further increase the efficiency
by stopping the chains from entering small pockets with no other exit (“dangling ends”) where they
would certainly perish. We therefore established an upper limit for the number of steps that can be
taken in each pocket, and kept the chain from entering whenever this limit was smaller than the number
of steps remaining to the desired length. However, avoiding such traps introduces a bias, which needs
to be canceled by multiplying the weight with 1− t/m where t/m is the fraction of available neighbor
sites that lead into a trap. Since the weights can now shrink, we also introduce pruning: Whenever the
weight is smaller than a (smaller) constant, c<, times W , it gets doubled but the branch is canceled
with probability 1/2. This avoiding of traps turned out to be crucial in the three-dimensional case.
This method is very similar to PERM [15] for normal SAWs, where the weights are multiplied by
a Rosenbluth factor of m in each step. However, the efficiency and reliability for this KGW-PERM
version is much higher, so that 800 steps could conveniently be achieved. The reason that chain-growth
methods perform better for KGWs is that they can only explore parts of the cluster, see Fig. 7 (top
right). For the KGW, the omitted regions hardly contribute, but a very dense region that is difficult to
explore can be critical to the SAW average.

3. Results
Before coming to the walks on CPCs, we shall briefly sum up the known results for regular lattices. As
already mentioned, the RW and the IC are identical in this case and have the normal diffusive (∼

√
N )

behavior. For the SAW, ν is approximated by the Flory formula ν = 3/(2 + D), which happens to be
exact in 2D. In 3D, there are very accurate numerical results [19]. For the KGW, numerical results are
much less precise, but it is assumed that the exponent is asymptotically the same as for the SAW [20].
However, that issue has long been controversial as numerical studies had yielded smaller values [21].
The values are summarized in Table 2 below.

Table 2: Exponents for walks on regular lattices.

walk RW IC SAW KGW
ν2D 1/2 1/2 3/4 = νSAW (Ref. [20]), 0.68 (Ref. [21])
ν3D 1/2 1/2 0.587597(7) (Ref. [19]) = νSAW (Ref. [20]), 0.525 (Ref. [21])

The measured mean distances on CPCs are shown in Fig. 3. Each data point was obtained from
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an independent sample of 104 randomly generated percolating clusters. The conformational averages,〈
R2
〉
, are exact for the RW, the IC, the SAW, and the first two data points for the KGW. The estimators

for longer KGWs are still quite accurate, the error from the chain-growth Monte Carlo being much
smaller than that on the disorder averages. As mentioned, the results for the 3D SAW are preliminary.
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Figure 3: Log-log plots of the mean square end-to-end distance vs. the number of steps for the different walk
types in 2D (top) and 3D (bottom).

Our estimates for ν presented in Table 3 are the insections with the y-axis of a linear extrapolations
of 1

2
∆ ln [〈R2〉]

∆ lnN vs. 2/(Ni+Ni+1); see Figs. 4 and 5. To reduce finite-size errors, only values forN ≥ 35
were included in the fit. The statistical errors are due to the finite size of the sample of clusters for the
disorder averages. For the RW, we find the sub-diffusive behavior (ν ′RW < 1/2) described in previous
works. It should be noted that the exact enumeration method for the RW and the IC would allow for a
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Figure 4: Extrapolations of 1
2

∆ ln [〈R2〉]
∆ lnN vs. 1/Nm to estimate the exponent ν

(
= limN→∞

d ln [〈R2〉]
d lnN

)
in 2D.

Only values where 1/Nm < 0.02 were used for the fit, Nm denoting the mean of successive values of N .

significantly larger number of steps. However, we did not go beyond the length which is achievable for
the SAW and the KGW, as the aim of this work is a comparison of the four models. The results for the
IC look initially similar to those for the RW, but after about 200 steps (Fig. 3) the slope of the curve
changes to a markedly larger value, which even exceeds 1/2 (super-diffusive behavior).

The shift to a larger value of the SAW exponent that has been reported in other studies is also
observed for our results. For the KGW, for which a smaller ν had been found numerically on regular
lattices, this shift appears to be more drastic, and the values for KGWs and SAWs seem to be identical
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Figure 5: Extrapolations of 1
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∆ ln [〈R2〉]
∆ lnN vs. 1/N to estimate the exponent ν in 3D. Only values where 1/N < 0.02

were used for the fit, Nm denoting the mean of successive values of N .

Table 3: Results for the exponents on critical percolation clusters.

walk RW IC SAW KGW
ν ′2D 0.357(3) 0.57(2) 0.780(5) 0.782(3)
ν ′3D 0.283(4) 0.54(2) 0.66(3) 0.649(4)

within the limits of accuracy. This is very surprising since the two walks do actually behave very
differently. This becomes evident when we look at the distributions of end-point locations and end-
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Figure 6: Distribution of end-point locations after 500 steps for the RW (top left), the KGW (top right), the IC
(bottom left), and the SAW (bottom right) on a logarithmic color scale. The black areas have not been explored
by the chain-growth Monte Carlo method for the KGW.

point distances. The shape of those distributions shown in Figs. 6 and 7 are typical: The end-locations
of the RW and the KGW tend to be fairly spread out, while those for the IC and the SAW have very
pronounced peaks. The reason for those peaks is that the conformational averages with uniform weights
are usually dominated by very few cluster regions where the connectivity is highest. This probably
also explains the crossover for the IC seen in Fig. 3: Initially, the region around the starting position
dominates the entropy. Longer chains can explore a larger area and eventually a distant, denser region
will become important and dominate until another, typically more distant region will take over. For the
SAW the situation is similar, only that the self avoidance will actively push the ends out of regions
closer to the origin as the chain length increases, see [18].

As a measure for this “localization” of the distributions, we looked at the average relative deviation
of the mean square distance,

[
σR2/

〈
R2
〉]

. As can be seen in Fig. 8, it seems to approach a constant
value for the normal RW and drops fastest for the SAW and the IC.

4. Conclusion
We studied four different random walk types on critical percolation clusters: the standard random walk,
the self-avoiding walk, the ideal chain and the kinetic growth walk. Some of the results confirmed
previous studies while others, in particular those for the KGW, are novel or of unprecedented accuracy.
(KGWs on CPCs have been studied before [22], but the author used an annealed averaging procedure.)
The main outcome is that the scaling of the mean square displacement with the number of steps is
increased for all but the RW model. This increase can be attributed to the stronger effect of self-
avoidance in effectively smaller dimensions for the KGW, to the alteration of entropically dominant
regions for the IC, and to a mixture of both effects for the SAW. Surprisingly, the exponents for the SAW
and the KGW were found to be indistinguishable, even though the end-point distributions are quite
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Figure 7: Probability distributions for end-point distances on the cluster shown in Fig. 6.
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distinct. We also presented a compilation of the most effective numerical methods for the treatment of
these models, among them a recently developed exact enumeration technique for SAWs and an efficient
variant of PERM for KGWs on very dilute lattices.
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