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Abstract 

The convergence of the long-time apparent diffusion tensor of diffusion magnetic 

resonance imaging (dMRI) to the effective diffusion tensor obtained by mathematical 

homogenization theory was considered for two-compartment geometric models containing 

non-elongated cells of general shapes.  A numerical study was conducted in two and three 

dimensions to demonstrate this convergence as a function of the diffusion time. 
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1. Introduction 

Diffusion magnetic resonance imaging (dMRI) can give useful information on cellular 

structure and structural changes [1]. We show that the effective diffusion tensor obtained by 

mathematical homogenization theory [2,3] gives a good approximation to the long-time 

apparent diffusion tensor of dMRI for two-compartment geometrical models containing non-

elongated cells of general shapes.  The homogenized diffusion tensor is obtained by solving 

d  steady-state Laplace equations (where 3,2d  is the problem dimension), which is a more 

computationally efficient approach than time-consuming simulations in the time domain, 

either via Monte-Carlo simulation or numerical solution of the time-dependent Bloch-Torrey 

PDE. 

2. Theory 

 We consider two compartments, in  and ex , to be an ensemble of cells and the extra-

cellular space, respectively, with the same intrinsic diffusion coefficient D. The cell 

membranes are modeled by an infinitely thin permeable interface   characterized by a 

permeability  . Fig. 1 illustrates a 2D example in which the union of blue cells is considered 

as the interior compartment and the remaining part is the exterior. 
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For a given diffusion-encoding magnetic field gradient with the temporal profile )(tf , 

gradient vector g


 and the gyromagnetic ratio  , the transverse magnetization is described by 

the two-compartment Bloch-Torrey partial differential equation (PDE) [4] 

                                       t ,xM Dt ,x Mxg tf i γ
t

t ,xM
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 and M=M
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 and with boundary conditions at the inter-compartment interface  : 
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 are normal vectors at   pointing outward ex  and in , respectively),  and 
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where dk abl kkk ..1,  , ),..,( 1 dxxx   is the spatial position, and ke


 is the unit vector in 

the thk  coordinate direction. 

For the uniform initial condition, the dMRI signal attenuation is computed by  

xd txMtg 


 ),(),(                                                    (4)  

and is usually plotted against the b-value:  
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We also denote q  the gradient direction: ggq / . 

Fig. 1: A two-compartment model with the extracellular compartment 
ex (white region), the 

intracellular compartment in
m

m

in   (blue regions) and the interface m
m
  
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From the Taylor expansion of the dMRI signal in b-value, we define the apparent diffusion 

tensor D
A
 which may depend on time t: 

 2
),(ln bObDtg A                                              (6) 

The long-time limit of D
A
 can be approximated by the effective diffusion tensor obtained 

from homogenization theory [6],  
dkdj
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jk

eff DD
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where the functions vj can be found by solving the Laplace equation 
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with the boundary conditions at the inter-compartment interface  , 
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and the boundary conditions at the exterior boundaries of the computational box   are 
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In fact, the Laplace equation (8) with the conditions (9) and (10) is just a long-time limit of 

the Bloch-Torrey equation (1) with the boundary conditions (2) and (3). So, their boundary 

conditions are similar. 

3. Materials and Methods 

 We solved the Bloch-Torrey equation and the Laplace equation using a linear finite 

element method relying on the Fenics (www.fenicsproject.org) platform for PDE formulation 

using finite elements and the Salomé (www.salome-platform.org) platform for mesh 

generation. We considered here a computational domain  dmm,-  1010  containing numerous 

non-elongated cells. To construct these samples, we randomly generated a set of segments in 

2D and a set of faces in 3D.  Since the boundaries should be periodic, we mirrored this set 

across all coordinate axes. Then, each segment (face) was thickened to create an extracellular 

compartment ex . The interior compartment in  includes the remaining polygonal (2D) or 

polyhedral (3D) cells. 

 The 2D sample was created by 20 thick segments that divided the computational domain 

into 116 convex cells (Fig. 2) with the volume fraction 0,77vi
 , the average radius of cells 

m1,2  and the average surface to volume ratio 1 m0,41S/V  . Similarly, the 3D sample 

was created by 16 thick faces which cut the cube into 80 cells (Fig. 3) with the average radius 

of cells m2,5 , volume fraction 0,66vi   and the average surface to volume 

ratio 1 m0,29S/V  . 
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 The same intrinsic diffusion coefficient of water molecules 
s

m-3 103D


 2

  was set for 

both interior and exterior compartments. Two values of permeability, 
s

m




 510  and 

s

m




 410 , were considered.  

The Bloch-Torrey equation (1) with the conditions (2) and (3) was solved for Stejskal - 

Tanner PGSE sequences (Fig. 4) with two rectangular gradient pulses of duration ms10  

and several diffusion times   to obtain the signal attenuation ),( tg  at some b-values, 






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
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3

2
2
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Fig.4: Stejskal-Tanner PGSE 

f(t) 

 

Then, the entries of AD  appear in front of the first-order term of the polynomial fit of 

),(ln tg  versus b-value.  

The Laplace equation (8) with conditions (9) and (10) was also solved over the same 

sample to obtain effD  by (7). 
All computations were carried out on a Dell Latitude E6410 laptop computer.  

4. Results 

 The 2D and 3D simulations on two samples shown on Fig.2 and Fig.3 are presented in this 

section.  

2D simulations  

We performed the simulations for two gradient directions [1,0] and [0,1]. Each D
A
 was 

computed from 7 b-values changing from 0 to 24000
m

s




 for 

s

m




 510 , and from 0 to 

x 

Fig.2: 2D sample 

y 

Fig.3: 3D sample 
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23000
m

s




 for 

s

m




 410  that took between 15 and 30 minutes for the mesh size of 33813 

vertices. On the contrary, it took only a few seconds to compute each effD on the same mesh. 

Figure 5 shows the convergence of AD  to D
eff

 for the first direction [1,0] and  the 

permeability 
s

m




 510  with 10 values of diffusion time   changing from 10ms to 190ms. 

We plot here the diffusion coefficient versus 1 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

More results in two gradient directions [1,0] and [0,1], three diffusion times =10ms, 50ms 

and 190ms and two permeabilities 10
-4

 m/s, and 10
-5

 m/s are in Table 1. 

Table 1. Summary of  results for 2D simulations 

        10
-4

 m/s 10
-5

 m/s 

 qDq AT 
 qDq effT 

 qDq AT 
 qDq effT 

 

q


 =10 =110 =190  =10 =110 =190  

[1,0] 5,33·10
-4

 5,24·10
-4 

5,23·10
-4

 5,22·10
-4

 3,84·10
-4

 3,66·10
-4

 3,65·10
-4

 3,64·10
-4

 

[0,1] 5,69·10
-4 

5,61·10
-4 

5,60·10
-4 

5,59·10
-4 

4,06· 10
-4

 3,95·10
-4

 3,94·10
-4

 3,93·10
-4 

3D simulations  

The simulations were performed for three gradient directions [1,0,0], [0,1,0] and [0,0,1]. 

Each AD  was computed at 9 b-values changing from 0 to 23000
m

s




 for  

s

m



 510 , and 

from 0 to 22000
m

s




 for 

s

m




 410 . The computation took between 30 minutes and 2 hours 

for each AD  on the mesh size of  50476 vertices. On the contrary, it took less than one minute 

to compute effD   on the same mesh. 

Five values of the diffusion time  , 10ms, 30ms, 50ms and 90ms, were chosen to study the 

convergence of AD  to effD  for the first direction [1,0,0] and 
s

m




 510 . The corresponding 

D
A
 was shown versus 1  in Fig. 6.  

Fig.5: The convergence of 
AD  to effD  in 2D in the  direction [1,0] and 

s

m




 510 . The blue 

circles represents D
A
, the dashed line shows a linear fit of D

A
 versus 

1 , and the red star indicates D
eff

. 
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More results for three gradient directions [1,0,0] , [0,1,0] and [0,0,1], three diffusion times 

=10ms, 50ms and 90ms and two permeabilities 10
-4

 m/s and 10
-5

 m/s are 

summarized in Table 2. 

Table. 2. Summary of  results for 3D simulations 

        10
-4

 m/s 10
-5

 m/s 

 qDq AT 
 qDq effT 

 qDq AT 
 qDq effT 

 

q


 =10 =50 =90  =10 =50 =90  

[1,0,0] 1,24·10
-3

 1,22·10
-3 

1,22·10
-3

 1,21·10
-3

 9,65·10
-4

 8.89·10
-4

 8.78·10
-4

 8,66·10
-4

 

[0,1,0] 1,73·10
-3 

1,67·10
-3 

1,67·10
-3 

1,66·10
-3 

1,26· 10
-3

 1,11·10
-3

 1,09·10
-3

 1,07·10
-3 

[0,0,1] 6,89·10
-4

 6,87·10
-4

 6,85·10
-4

 6.85·10
-4

 5,01·10
-4

 4,93·10
-4

 4,92·10
-4

 4,91·10
-4

 

5. Discussion and conclusion 

The results in Figures 5, 6 and Tables 1, 2 show that the long-time apparent diffusion tensor 

D
A
 approaches the steady-state tensor D

eff
 computed by the homogenization for PGSE 

sequences in both cases of isotropic and anisotropic diffusion. The convergence is faster at 

higher permeability and seems to be linear in term of 1  that agrees with the result for 1D 

periodic structure in the long-time regime [7].  This approach can be applied to general 

geometrical shapes, as long as a good mesh can be generated.  Other diffusion-encoding pulse 

sequences may be used, as long as the diffusion time is long.  The computation of D
eff

 is much 

faster than that of D
A
.  We expect that the experimentally obtained apparent diffusion tensors 

can be used to estimate D
eff

 by extrapolation in 
-1

, and then information, obtained analytically 
or numerically, about D

eff
 can be used to infer the properties of the imaged sample. 
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Fig. 6: The convergence of DA to Deff in 3D  for the  direction [1,0,0] and 
s

m




 510 . The blue circles 

represents DA, the dashed line shows a linear fit of DA versus 
1 , and the red star indicates Deff. 
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