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Abstract 

Although flowing foams are used in a variety of technologies, foam rheology is still 

incompletely understood. In this paper we demonstrate the use of a velocity-sensitised 

magnetic resonance imaging (MRI) sequence for the study of flowing foam. We employ a 

constant-time (pure phase encode) imaging technique, SPRITE, which is immune to 

geometrical distortions caused by the foam-induced magnetic field inhomogeneity. The 

sample magnetisation is prepared before the SPRITE imaging with the Cotts 13-interval 

motion-sensitisation sequence, which is also insensitive to the effects of the foam 

heterogeneity. We measure the development of a power-law velocity profile in the foam 

downstream of a Venturi constriction (in which the cross-section of the tube decreases by 

89% in area) in a vertical, cylindrical pipe.  
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1. Introduction 

Flowing foams have a wide range of applications, including foods processing, enhanced oil 

recovery, pipeline transport and cleaning. Unfortunately, although foam rheology is 

complicated and difficult to model [1,2,3], measurement of the velocity field in flowing foams 

is complicated by their optical opacity and delicacy. Magnetic resonance imaging is an 

obvious candidate for non-invasive measurements in optically opaque systems and there has 

been successful application of MRI methods to the study of foams [4,5]. However, 

heterogeneous materials, pose some challenges to MRI. The variation in magnetic 

susceptibility at the liquid/gas boundaries causes local gradients in the magnetic field, which 

can cause distortions in an MR image. We have chosen an MRI protocol which is particularly 

robust to the effects of inhomogeneous magnetic field in order to measure velocity maps in 

the vertical flow of a wet foam.  
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Fig. 1: (a) Glass column for foam production. The sparger is 

composed of sintered glass and the foam breaker is a wire 

basket, which can be rotated through the accumulating foam. 

The two insets show (b) a typical consistency of the foam 

produced at a gas flow rate of 250 ml/min and (c) the geometry 

of the constriction through which foam rises. 

Fig. 2: (a) Pulse sequence diagram for the velocity-

sensitised MRI measurement. The RF pulses 1-6 

comprise the Cotts 13-interval preparation. Any of 

the SPRITE family of imaging sequences can 

follow: we employed SPRITE as described in [8], 

so that each prepared k-space trajectory was a 

single line of a Cartesian raster and therefore short 

in duration compared to T1. (b) The phase cycle is 

shown in the table below [7]. 

2. Methods and Materials   

 Foam was generated in a vertical, cylindrical glass pipe by bubbling sulphur hexafluoride, 

SF6(g), through a micron sparger immersed in a foaming mixture of 1.5 g/L sodium dodecyl 

sulphate (SDS, Aldrich, Ontario, Canada) and 30 mL/L glycerol (also Aldrich) in distilled 

water. The rising foam passed through a Venturi 

constriction in which the pipe diameter changed from 17.3 

to 5.6±0.1 mm and emptied into an open reservoir. As the 

foam collapsed, the foaming mixture was pumped back to 

the sparger vessel.  

The apparatus is similar to that reported by Deshpande and 

Barigou [6] and the same basic design has been in use for 

foam research since the mid sixties (Fig. 1). In other work, 

the foam structure has been studied optically or using 

gamma rays, for example [6 and references therein].  

 

In our measurements, the foam rose, as it was generated, 

up the bore of a 4.7 T magnet (Cryomagnetics, TN, USA) 

through a DSI 875 Litz RF coil (Doty Scientific, SC, USA) 

inside a homebuilt 3-axis set of gradient coil windings. 

The liquid was doped with GdCl3 in order to reduce T1 to 

250 ms. T1 was assessed using a saturation-recovery 

sequence because the foam is in constant motion.  

 

Flow measurement was carried out using a Cotts-13-interval-prepared SPRITE sequence [7] 

(Fig. 2) executed by a Redstone console (Tecmag, TX, USA). SPRITE is a constant-time, 

purely phase-encoded imaging technique, which suffers no geometrical distortion, even in 

gravely inhomogeneous samples [8], because the susceptibility effects are the same at every 

data acquisition point. The 180º pulses (2 and 5) in the Cotts sequence somewhat refocus the 

effects of the inhomogeneous foam sample as far as the motion sensitisation is concerned [9].   

 

 

 

(a) (b) 

(c) 

 

(b) 

(a) 

© 2013, Benedict Newling 
diffusion-fundamentals.org 18 (2013) 5, pp 1-4

2



 

Fig. 3: Velocity maps obtained using the pulse 

sequence of Fig. 2. Foam flows were generated with an 

SF6(g) flow rate of (a) 250 ml/min and (b) 500 ml/min. 

The foam flows upwards (+z) through the constriction. 

The effects of the constriction upon the foam flow are 

limited in range. The dotted lines indicate the location 

of the profiles which appear in Fig. 4.  

Fig. 4: Profiles of vz taken at the locations indicated 

by dotted lines in Fig. 3. In the first column (a) are 

profiles with an SF6(g) flow rate of 250 ml/min and in 

the second column (b) are the corresponding profiles 

with an SF6(g) flow rate of 500 ml/min. The power-

law model (solid line, top left) is described in the text.  

The motion-sensitising interval Δ = 7.4 ms and the effective gradient pulse duration δ = 0.4 

ms as drawn (although the gradient pulses were actually trapezoidal). In order to keep 

measurement times manageable, despite low proton density (foam/solution FID amplitudes at 

31 μs, suggest 88% gas fraction), motion-sensitising gradient amplitudes of gx = ±82.1 mT/m, 

gy = ±47.3 mT/m, gz = ±88.8 mT/m were employed in combination with a MATLAB 

(Mathworks, MA, USA) implementation of the Goldstein phase-unwrapping algorithm [10]. 

Images (32
2
 points zero-filled to 64

2
) took 3 minutes to acquire and the field of view was 60 x 

46 mm
2
, making the nominal size of each pixel 1.9 x 1.4 mm

2
 (much larger than most bubbles 

in the foam).  The α pulse (7) had a duration of 2 μs resulting in a tip angle of 8° and the 
phase-encoding interval which followed in the SPRITE imaging sequence was 170 μs. 

3. Results 

Fig. 3 shows maps of three components of velocity 

obtained at two different gas flow rates. The z-axis 

(with the marginally higher spatial resolution) is in 

the same direction as the polarising magnetic field 

(B0), the y-axis is across the tube and the x-axis is out 

of the page.     

The flow of foam up the column shows plug-like 

behaviour and develops over less than a centimetre 

downstream of the constriction.  

(a) (b) 

1 cm 

(a) (b) 
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Fig. 4 shows the developing vz profiles measured from the velocity maps in figure 3 at the 

locations indicated by dotted lines. One sample model of power-law fluid flow  

 

(1) 

 

with r the distance from the tube centre, rmax the tube radius and n = 0.01, has been summed 

over the tube cross-section and is overlayed on the top left profile. Power-law models are used 

in the description of foam pipe flows [6].  

4. Conclusions 

Cotts-prepared SPRITE sequences are clearly capable and appropriate in the non-invasive 

study of foam flows. Foam generation has been sustained for up to 7 hours with no apparent 

degradation in foam production, which has allowed us sufficient time to also make these 

measurements in three dimensions. One complication is complexation of the Gd
3+

 ions by the 

SDS surfactant. This leads to a gradual increase in T1 over several hours and some cloudiness. 

Additional surfactant restores the relaxation and optical behaviours, but also affects the foam 

properties. We plan, in future work, to use a pre-chelated contrast agent to avoid this problem. 

The three-dimensional velocimetry data will be part of a later report in which we map 

velocities using 
1
H and 

19
F measurements on the same flows. In this way we can compare the 

liquid and gas velocity fields in the foam. Some discrepancy is expected between the velocites 

of the two phases, because the liquid drains through the continuous phase at the same time as 

the foam rises up the column.    
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