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Abstract 
Real systems always contain some degree of polydispersity and yet the effects of this 

real and very important problem have not been studied in great detail in NMR diffusion 
experiments. The effects of polydispersity become even less clear when we are outside 
the short gradient pulse (SGP) limit (which we generally are). Here we investigate the 
effects of polydispersity, in the form of a Gaussian distribution of characteristic distances, 
on the coherence features of PGSE NMR experiments of a model system. Characteristic 
pore sizes were determined from the coherence features and compared to characteristic 
distances determined from Fourier transforms of the second derivative.  
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1. Introduction 
 Pulsed gradient spin-echo (PGSE) NMR is a powerful tool ideally suited for 
measuring molecular dynamics in porous systems. PGSE NMR is unique in that it is non-
invasive, it can simultaneously study multiple species independently in a mixed sample, 
and it can probe the internal structure of samples at length scales much smaller than 
conventional NMR imaging. Consequently, PGSE NMR is routinely used in a wide range 
of fields and disciplines such as oil exploration [1-3], drug delivery systems [4], 
remediation of contaminated waste-water [5,6], and analytical techniques involving 
chromatographic processes [7-9]. 
 PGSE NMR measures molecular motion via the attenuation of a spin-echo signal. 
Under certain conditions, diffraction-like effects appear on the echo attenuation curve at 
regular intervals of the wave vector q (=γδg/2π). These coherence features can 
subsequently be used to probe morphological characteristics of restricted systems (i.e., 
pore size, tortuosity, and connectivity). For example, polystyrene spheres [10], red blood 
cells [11], yeast cells [12], brain white matter [12], water-in-oil emulsions [13], and 
molecules between glass plates [14,15] have been studied using PGSE NMR.  
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 Despite the successful characterisation of the systems mentioned above, experimental 
factors such as background gradients, wall relaxation, and polydispersity can distort or 
even remove the coherence features in the signal attenuation curve. While bipolar 
gradients in PGSE pulse sequences have been reasonably successful in removing the 
effects of background gradients [16-18] and extra terms in the analytical expressions can 
account for the additional decay due to wall relaxation [19], the mechanisms for dealing 
with polydispersity have not been investigated in detail.  
 The systems mentioned above (like all experimental systems) contain some degree of 
polydispersity (i.e., a distribution of characteristic distances). The subsequent coherence 
features in polydisperse samples are “damped” because the average weighted signal used 
in PGSE NMR superimposes nodes at slightly different locations on q. In extreme cases 
the coherence features can completely disappear and the signal attenuation curve may 
only show Gaussian diffusion and hence may lead to a mis-characterisation of the 
sample.  
 Models which assume pores with slanted walls [15,20], a Gaussian distribution of 
characteristic distances [15], and a combination of smooth and zigzag surfaces [20] have 
all been fitted successfully to experimental data. Nevertheless, the authors are unaware of 
any experimental studies which have tested the validity of these models against a range of 
experimental conditions.  
 A method for delineating the underlying coherence features in poorly defined PGSE 
data was proposed by Kuchel et al. [21]. The method involves weighting the data using 
the Blackman-Harris window function [22], interpolating with a shifting cubic spline, and 
then the second derivative is taken prior to Fourier transformation. The ability of this 
numerical tool to identify instances where more than one set of coherence features are 
present may allow for a more accurate determination of pore structure. Subsequently, the 
second derivative method can be an important tool for interpreting PGSE diffraction 
profiles of polydisperse samples. 

In this study we use a well defined model system (parallel planes) prepared to give 
different amounts of polydispersity to test the validity of the Gaussian distribution of 
characteristic distances model describing polydispersity. Fourier transforms of the second 
derivative were used in the analysis of the PGSE data. 

2. Theory 
PGSE NMR spatially labels the 

position of the spins in a system by 
recording the phase of the transverse 
magnetisation via spin-echoes (Fig. 1). 
The position of the spins is recorded at 
two instants in time which correspond to 
two positions (say r and r’). If r and r’ 
are identical (i.e., the spins remain 
stationary or return to their starting 
position), the net phase change,  
γδg·(r - r’) = 0, and the spins create a 
refocussed echo. However, if the spins 

 
Fig. 1: Schematic representation of the 
Tanner NMR pulsed field gradient 
stimulated spin-echo pulse sequence for 
the PGSE experiment.  
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move to a different position during the time between the gradient pulses (Δ), γδg·(r - r’) 
≠ 0, their contribution to the echo will be phase shifted. The degree of the dephasing due 
the applied gradient is proportional to the displacement in the direction of the gradient 
during Δ. In the case of translational diffusion, each spin in a system will have a random 
phase change causing the spin-echo signal (Eq. (1)) to attenuate due to averaging of the 
incoherent phases over the entire sample.  
 The short gradient pulse (SGP) approximation gives the normalised echo attenuation 
for a two impulse scheme, such as a Hahn spin-echo based sequence or stimulated spin-
echo based sequence (Fig. 1), by [23] 
 ( ) ( ) ( ) ( )| ', exp ' 'E P iρ γδΔ = Δ ⋅ −⎡ ⎤⎣ ⎦∫ ∫g r r r g r r rd dr  (1) 

where ρ(r) is the equilibrium spin density and P (r|r’, Δ), the diffusion propagator, is 
given by the solution to the diffusion equation. By ensuring δ << Δ, mathematically 
tractable equations which describe diffusion within symmetrical pores (e.g., planar 
[23,24], cylindrical [19,25], and spherical [26,27]) can be derived from Eq. (1). A 
significant advantage of using the SGP approximation over some other methods is that it 
can model diffraction-like effects. 
 Diffraction effects in PGSE NMR derive from the average propagator, which is the 
probability ( ),P ΔR  that a spin at any starting position will displace by R during period 
Δ, is given by 
 ( ) ( ) ( ), ,P PρΔ = + Δ∫R r r r R, dr  (2) 
where the diffusion propagator is multiplied by the equilibrium spin density and 
integrated across the whole sample. In terms of the average propagator Eq. (1) reduces to 
 ( ) ( ) 2, , iE P e π ⋅Δ = Δ∫ q Rq R dR  (3) 
where q is introduced to include the effects of the gradient into the analysis. 
 In the long time limit (Δ→∞), all species trapped within a pore become independent 
of their starting positions and, therefore, diffusional processes, so 
 ( ) ( ), ,P R ρ+ ∞ = +r r r R . (4) 
Consequently, the average propagator becomes 
 ( ) ( ) ( ),P ρ ρ∞ = +∫R r r R dr . (5) 
 In the limit where the diffusing molecules have sampled the entire pore, the 
propagator is an autocorrelation function of ρ (r). Using the Wiener-Kintchine theorem 
[28] and Eq. (3) we find that E (q, ∞) is the power spectrum of ρ (r), 
 ( ) ( ) 2

,E S∞ =q q  (6) 

where S (q) is the Fourier transform of ρ ( r’).  
 The signal obtained has no phase information, therefore a Fourier transformation 
cannot be carried out to obtain structural information from a “conventional” image. 
Instead, structural information is obtained by plotting the signal attenuation vs. the 
reciprocal space of acquisition (q). In the case of parallel plane pores,  
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where D the diffusion coefficient and the gradient (g) is perpendicular to the planes. The 
second term in Eq. (7) disappears at long Δ and diffractive minima appear at  
q = n/a (n = 1, 2, 3, …) (see Fig. 2).  
 The accuracy of the SGP approximation is however limited by its reliance on (i) 
gradient pulses which have durations much shorter than their separations (δ << Δ), and 
(ii) the distance diffused during the gradient pulse is small compared to the characteristic 
dimensions of the system (Eq. (8)), 

 
2a

D
δ  (8) 

where δ is the length of the gradient pulse and a is the characteristic distance of the pore. 
In the case of large molecules in small pores, meeting the condition in Eq. (8) can pose 
problems for the NMR hardware 
subsequently leading to errors including 
an underestimation of the pore size 
[29,30]. As mentioned earlier, the porous 
nature of the sample may be lost when 
these conditions are not met. 
Subsequently, some authors have 
developed methods which approximate 
finite-width gradient pulses by 
discretising the gradient pulses into 
intervals of infinitesimally narrow pulses 
[30,31]. The matrix formalism [30] is 
particularly successful in significantly 
reducing errors associated with diffusion 
during the gradient pulse leading to an 
underestimation of the pore dimensions 
and has been experimentally verified [15]. 
Using this discretisation, the PGSE pulse 
sequence (Fig. 1) is subdivided into 2N+1 
intervals of length τ such that the total 
length of the sequence is (2N+1)τ with 

 
Fig. 2: Simulation of a PGSE coherence 
feature modelled using the SGP 
approximation and matrix formalism. Δ
was set to 2 s, δ was 2 ms, and the planar 
separation (a) was 128 μm. The effects of 
the finite gradient pulses are evident in the 
matrix-based simulations with the 
diffractive minima moving to higher q. 

 1
2

N τ⎛ ⎞Δ = +⎜ ⎟
⎝ ⎠

,  (9) 

 1
2

Mδ τ⎛ ⎞= +⎜ ⎟
⎝ ⎠

,  (10) 

hence the total effective scattering wave vector amplitude is 
 ( ) ( )( ) 1

net 1 1 2q M q M gτ π γ τ−= + = + . (11) 
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 Finally, the matrix equation for the attenuation is 
  (12) ( ) ( ) ( ) ( )† †MM N ME S q RA q R RA q RS q− ⎡ ⎤= ⎡ ⎤⎣ ⎦ ⎣ ⎦

where component matrices are given by 
 ′=S BS , (13) 

 † ′=A C A C , (14) 

and 
 ( )2 2 2exp /R k Dπ τ= − a . (15) 

B and C are diagonal matrices defined by 
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and  

 1
2kk k kk kA S S′ ′+′−
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3. Experimental 
 The model experimental system used in this study was a single pore with parallel 
boundaries. A water solution (20% H2O and 80% D2O) was placed between the tube and 
plunger of susceptibility-matched microtubes (BMS-3; Shigemi, Tokyo) with the plunger 
positioned to give a separation of about 150 μm (a) with the bottom of the tube with the 
gradient direction being perpendicular to the planes (Fig. 3a). The end of the plunger was 
polished with different grades (FEPA system) of sand paper (600 – 120) to obtain 
surfaces with different degrees of rugosity. After the plunger was polished with the 120 
grade sandpaper it was extremely difficult to achieve a small pore size (due to removal of 
the taper on the plunger as seen in Fig. 3b) therefore experiments carried out had a 
characteristic distance of approximately 250 μm. To ensure the polished surface was 
perpendicular the sides of the plunger, a hole (diameter 4 mm) was drilled in an 
aluminium block that had been machined with high precision to give perpendicular 
surfaces. The polishing system used only allowed polishing the end of the plunger and 
not the plane surface within the tube. 
 1H NMR experiments were performed at 298 K on a Bruker Avance 500 wb 
spectrometer equipped with a 5 mm broadband inverse probe equipped with a single (i.e., 
z) shielded gradient coil connected to a GREAT 3/10 current amplifier. The strength of 
the gradient was calibrated using the 
known diffusion coefficient of water 
whilst the temperature in the NMR probe 
was calibrated using methanol. The 
stimulated echo pulse sequence with 
“rectangular” gradient pulses was used to 
obtain the characteristic diffusion-
diffraction pattern. The tube arrangement 
gave two resonances: a narrow resonance 
for water between the planes and a 
broader resonance from water on the sides 
of the plunger. The two resonances 
overlapped at low q values and could not 
be separated without significantly 
degrading the field homogeneity.  
 Simulations of PGSE coherence 
features modelled using the matrix 
formalism were carried out using Mathcad 
13 (Mathsoft, Cambridge, MA) and 
Fourier transforms of the second 
derivative were performed in 
Mathematica 5.0. 

 
Fig. 3: (a) Shigemi tube arrangement 
showing the pore of characteristic distance 
a created between the plunger and tube, (b) 
parallel boundary pore with idealised 
walls, and (c) parallel boundary pore with 
rough walls which is approximated by a 
Gaussian distribution of characteristic 
distances. The arrow indicates the 
direction of the magnetic field gradient (g). 
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4. Results and Discussion 4. Results and Discussion 
 Firstly, the rugosity in the parallel pore was modelled using a Gaussian distribution 
about the spacing in the middle of the tube (a0) where a weighting factor was introduced 
to reflect that the NMR signal will be larger from regions of larger separation 

 Firstly, the rugosity in the parallel pore was modelled using a Gaussian distribution 
about the spacing in the middle of the tube (a0) where a weighting factor was introduced 
to reflect that the NMR signal will be larger from regions of larger separation 

( )

  ( )( )

 
Fig. 4: PGSE coherence data simulated 
using the matrix formalism of a Gaussian 
distribution of characteristic distances 
where σ was varied between 0.0a0 to 0.4a0. 
The inset displays the probability of 
finding a spin at a particular value of z. 

2
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22
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σ π
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−

=  [20] 

where ρ(z) is probability of finding a spin at some value of z and σ is the standard 
deviation. 
 The effect of a Gaussian distribution of characteristic distances can clearly be seen in 
(Fig. 4). A standard deviation of 0.2a0 is enough to remove all but the first diffraction 
minima and a standard deviation of 0.4a0 removes all coherence features. 

Secondly, the simulations above are supported by experimental data in Fig. 5 where 
the samples with a higher degree of rugosity clearly show a damping of the coherence 
features. The absolute attenuation of the experimental data in Fig. 5 is greater than that in 
the simulations because the free diffusing spins, which attenuate more rapidly, contribute 
to 1H peak at low qa values. Consequently, the σ values used to damp the modelled 
diffraction minima and fit the model to the experimental data may be slightly lower than 
what would be expected if the experimental data only consisted of spins undergoing 
restricted diffusion.  

The shifting of experimental minima to higher qa than the models predict which was 
seen in previous studies [15] is not observed. Also in Fig. 5a – Fig. 5c, the amount of 
rugosity in the system was insufficient to decrease the number of maxima/minima cycles 
in our attenuation curves. 

The only other factors which could 
cause such a damping of the coherence 
features as seen in Fig. 5 are wall relaxation 
[24], background gradients [15], and 
neglecting the motion of spins to adjacent 
regions with different characteristic 
dimensions during Δ. Firstly, it has been 
proven in a number of studies that the 
surface relaxivity of glass is such that the 
perfectly reflecting wall approximation is 
reasonable [15,20,32,33].  Secondly, 
background gradients still form at the glass-
water interface despite using susceptibility 
matched tubes [34]. Two glass-water 
interfaces within 100 μm to 300 μm, like 
those used in this study, result in substantial 
background gradients which cannot be 
removed even when using bipolar gradient 
pulses because the long Δ used enable the 
spins to travel into regions of different 
magnetic field strength. 
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Fig. 5: PGSE signal attenuation profile for water diffusing between planes in a Shigemi tube 
after (a) no polishing, (b) the plunger polished using 600 grade paper, (c) 400 grade paper, and 
(d) 120 grade paper. The experimental data in (a-c) was obtained with Δ = 4 s and δ = 2 ms 
whereas experiments for (d) has Δ = 7 s and δ = 2 ms in order to maintain the DΔ/a2 ratio. Each 
spectrum was the average of 32 transients with a recycle delay of typically 36 s which was 
sufficient to allow for full relaxation (i.e., > 5 x T1) between each transient. The experimental 
data was fitted to the model for a Gaussian distribution of characteristic distances (dotted line). 
The characteristic distances stated on each figure were determined by fitting to the matrix 
formalism and confirmed using an optical travelling microscope (PTI, Hampshire, England). 

Background gradients can be modelled using a cosine profile [35] which has recently 
been solved [36]. Finally, coherence features only become apparent when a significant 
portion of the spins sample the boundaries of the confining geometry of a particular 
characteristic distance. If a spin moves into an adjacent region with a different 
characteristic distance during Δ, coherence features become less distinct. Pore hopping 
theory has successfully characterised random walk simulations within regularly spaced 
rectangular barriers [37] and could be applicable in our model where the interconnection 
size would approach zero. Presently, the authors are working on more sophisticated 
models which include background gradients and investigating the applicability of pore 
hopping models and stochastic boundary conditions. 
 The probability of finding a spin at each characteristic distance (weighted propagator 
P(z)) was obtained by interpolating the experimental data in Fig. 5, applying the 
Blackman-Harris window function, taking the second derivative of the interpolations, and 
finally numerically Fourier transforming the derived data. The weighted propagators in 
Fig. 6a and Fig. 6c both show characteristic distances very similar to those determined 
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directly from the coherence features. The characteristic dimensions determined from Fig. 
6b and Fig. 6d are also similar to values determined directly from the coherence features 
but give two distinct characteristic distances between the parallel planes. Two 
characteristic distances from samples polished using the 600 and 120 grade sandpaper 
could explain why there is a misalignment of some nodes from the matrix formalism to 
nodes in the experimental data.  

 
Fig. 6: Weighted propagator P(z) for PGSE NMR q-space data after the application of a 
Fourier transform of the second derivative. The data in (a) is from a pore of characteristic 
distance of 150 μm, (b) 165 μm pore after sanding the plunger with 600 grade sandpaper, (c) 
140 μm pore after sanding with 400 grade sandpaper, and (d) a 250 μm pore after sanding 
with 120 grade sandpaper. 

 The potency of the second derivative method for interpreting damped coherence 
features is further demonstrated in Fig. 7 which contains experimental data and Fourier 
transforms of the second derivative of the PGSE data obtained from the sample polished 
using the 120 grade sandpaper at different diffusion intervals (Δ). Even though the 
coherence features are much less distinct in Fig. 7a compared to Fig. 7b, Fourier 
transforms of the second derivative gives the same result. Subsequently the second 
derivative method could be used in more polydisperse systems where the coherence 
features are less distinct.  
 The Gaussian distribution model of characteristic distances used in this study was 
successful in simulating the damping effect of polydispersity but some anomalies exist. 
For example, the damped coherence features in Fig. 5a also correspond to parallel planes 
with a wall slanted by 0.4 degrees. For our system a model which incorporates both 
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Fig. 7: PGSE attenuation curves (top) and corresponding weighted propagators (bottom) after 
application of the second derivative method for a pore after sanding with 120 grade sandpaper. 
The data in (a) and (c) was obtained with Δ = 4 s whist (b) and (d) was obtained with Δ = 7 s. 
Despite the coherence features in (a) being significantly less distant than those in (b), the 
weighted propagators give the same characteristic dimensions. 

slanted pore walls and a Gaussian distribution of characteristic distances would provide a 
better fit but will still only be approximations for a stochastic boundary condition. 
 Given a set of possibly polydisperse PGSE data and with currently available models 
and methods, one should apply the Fourier transform of the second derivative to 
determine if there are a few characteristic distances within the sample. Using either the 
Gaussian distribution of characteristic distances or slanted pore wall models, one can then 
quantify the polydispersity in the system by fitting the data to simulations of PGSE 
coherence features using either the matrix formalism or SGP approximation. The authors 
are currently working on improved techniques for characterising polydisperse PGSE data. 

5. Conclusion 
 The Gaussian distribution of characteristic distances is reasonably successful in 
describing the polydispersity between parallel planes although a model which considers 
stochastic boundary conditions would be more ideal. A Fourier transform of the second 
derivative was however shown to be extremely useful in characterising our model system 
and explaining possible inconsistencies in experimental results. 
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