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Abstract 
Diffusion processes in ultra-thin liquid films observed by video microscopy reveal a 

complex behavior. In contrast to homogeneous diffusion, dynamic and static 
heterogeneities are induced by layer transitions and compartments with differing 
diffusion coefficients, respectively. The objective of this research is the detection and 
distinction of such heterogeneities as well as an analysis of the underlying processes. 
Hence, a new method is proposed establishing a probability density of scaled squared 
displacements. This probability density allows for a simple and well-defined calculation 
of time-dependent diffusion coefficients and its fluctuations. Furthermore, by simulating 
a heterogeneous diffusion process these results are verified and compared to mean square 
displacement calculations. By means of the simulated probability density data, their 
dependency on the parameters is illustrated and further implications are pointed out. 

keywords: diffusion, dynamic and static heterogeneity, scaled squared displacements 

1. Introduction 
Investigating diffusing molecules in liquid films by video microscopy offers an 

interesting field of research. Within the liquid film the fluorescent molecules conduct a 
three-dimensional diffusion process caused by collisions with the particles of the liquid. 
However, the three-dimensional trajectory is observed by video microscopy. The 
resulting video of the diffusing molecules corresponds to the two-dimensional projection 
of the actual movement. Thus, the projected trajectory lacks information about the third 
dimension. As a consequence, a change in the third dimension and therefore in the 
diffusion properties of the molecules cannot be observed directly. Nevertheless, it 
influences the molecule's projected trajectory and might be detected by improved 
analysis. 
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In an experimental setup, the projected position of a tracked particle can be measured 
directly. A recently developed tracking method [1] determines the positions of the 
molecules accurately even if blinking effects of the fluorescent molecule interrupts its 
visible trajectory. The position of the particle is extracted at two times characterized by a 
time difference τ. It results from the observation time or the measurement process. Thus 
in video microscopy, the lower limit is given by ττ ≤min , which is related to the inverse 

of the frame rate. It represents the smallest resolvable variation in time for observing the 
particles' movements. From the difference of the two positions the corresponding squared 
displacement is obtained by calculating 

 ( ) ( )22 )):)( (t(t rrr −+=∆ ττ . (1) 

Due to their close relation to diffusion coefficients squared displacements are often used 
for data analysis. In particular, squared displacements are averaged over time t  or over 

all particles to obtain a mean square displacement graph ( )2)(τr∆  versus τ. Then, the 

slope of the mean square displacement is related to the diffusion coefficient according to 
the Einstein-Smoluchowski-equation [2]. As a result, the mean diffusion coefficient of 
the observed molecule can be determined. 

In general, the method of mean square displacement calculations yields sufficient 
information for homogeneous isotropic diffusion, where only one diffusion constant 
exists. However, diffusing molecules in ultra-thin liquid films reveal a more complex 
behavior [3]. A convincing picture is given in [4] describing a layering of liquids at solid 
interfaces leading to inhomogeneous diffusion. As a consequence, a layer model for such 
systems was developed. It involves a layer-dependent diffusion coefficient. Further, the 
molecules have the ability to switch between the layers during their diffusion process. In 
a projection as performed in experiments, the jumping between layers appears as a 
dynamical, random switching between different diffusion coefficients. This process 
results in so-called dynamic heterogeneities. Moreover, recent experimental observations 
indicate the existence of impurities on the substrate. They result in an altered diffusion 
coefficient in such a region due to gliding via silanol bridging [5] or a slowdown of 
diffusion [6,7]. Thus, the diffusion process is additionally influenced by static 
heterogeneities. A correct analysis of the observed inhomogeneous diffusion process 
constitutes the necessity to detect static and dynamic heterogeneities. Thus, besides mean 
square displacement calculations new methods have to be established in order to 
distinguish between both inhomogeneities and extract their parameters. The drawback of 
determining mean square displacements lies in the information loss caused by the 
averaging procedure . It conceals the effects caused by the existence of several different 
diffusion coefficients. 

To investigate the behavior of such an inhomogeneous system with N layers, a 
simulation of the diffusion process is carried out. The model is defined by  

 [ ] { }NnmtpDtpwtpwtp
t m

nnnmnmnmn ,,1,with ),(),(),(),( 2
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a system of N  partial differential equations for the probability densities ),( tpn r  for 

finding the particle at time t  at position ),( yx=r  in the n -th layer. In Eq. 2, 

nmw denotes the transition rate from layer m  to layer n , and nD  is the diffusion constant 

in the n -th layer. The mean dwell time mt̂  in layer m  is determined by the transition 

rates via 
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n

nmm wt . (3) 

Hence, the movement of a diffusing molecule is modeled by ordinary two-dimensional 
diffusion within a layer interrupted by jumps between layers governed by a master 
equation. Since in experiment two-dimensional projections of this process are observed, 
the statistics of these observations are governed by the projected probability density  

 ∑=
n

n tptp ),(),( rr . (4) 

This projection of the diffusion process onto the two-dimensional plane and the jump 
process between layers with distinct diffusion coefficients induce the dynamic 
heterogeneity. Furthermore, the static heterogeneity is modeled by a compartment with a 
different diffusion coefficient in the base layer next to the substrate. If a molecule enters 
this particular region it diffuses with the given diffusion coefficient deviating from the 
ordinary coefficient in the base layer. 

For a system comprising only two layers further analytical results can be deduced. By 
integrating Eq. 2 over all positions r  within a layer, as a result the master equation 

 [ ] { }2,1,with )()()(
d

d ∈−=∑ nmtpwtpwtp
t m

nmnmnmn  (5) 

is obtained describing a two-state Markov process. The equilibrium layer probabilities 1π  

and 2π  are easily obtained from detailed balance as 
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With this equilibrium distribution, the mean diffusion coefficient of the bi-layer system 
as obtained e.g. from a long-term measurement of the mean square-displacement, can be 
calculated as 

 2211 ππ DDD +=  (7) 

a weighted sum of the diffusion coefficients of the two layers. 
In conclusion, the three-dimensional diffusion process is modeled by a two-

dimensional random walk and an additional jump process. Due to the projection and 
embedded compartments, the simulated data contain both dynamic and static 
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heterogeneities. Therefore, it resembles the inhomogeneous diffusion process observed 
experimentally. Consequently, improved investigation methods and related findings 
tested with the simulated data can be applied to real experimental data. 

A model of a bi-layer system with thickness 2-10 nm is illustrated in Fig. 1. The 
dynamic heterogeneity originates from the layers with their distinct diffusion coefficients. 
Furthermore, the base layer next to the substrate comprises a compartment with a third 
diffusion coefficient. Hence, a model with both static and dynamic heterogeneities is 
established. 

 

It is the objective of this research to develop advanced methods for the analysis of 
such inhomogeneous diffusion processes. This is necessary since investigations based on 
homogeneous diffusion are no longer appropriate if heterogeneities are involved. 
However, investigations in this article are restricted to dynamic heterogeneities since 
static heterogeneities will be covered in future work. Furthermore, a connection to the 
commonly used analysis via mean square displacements is established. To validate the 
theoretical considerations, the proposed methods have been applied to the diffusion of 

Fig. 1: The bi-layer system is used for the simulation of a molecule's 
trajectory. Dynamic heterogeneity is induced by the two layers with their 
distinct diffusion coefficients. Within the red-colored compartment in the base 
layer next to the substrate the diffusion can be modified providing a static 
heterogeneity. 
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Rhodamine B dye molecules in ultra-thin liquid films of TEHOS and have been 
compared to previous results [8]. 

2. Probability density of scaled squared displacements 
The measurement of squared displacements represents a common approach to analyze 

the properties of a diffusion process. However, these squared displacements are directly 
related to the time difference τ for which they are measured. Since the variance of the 
particles' positions of a Wiener process grows with increasing time interval, the particles 
can explore a larger area. Exactly this is achieved by increasing the time between two 
observations of the particle. Hence, the squared displacements depend on τ and will be 
larger for longer measurement time intervals or lower frame rates. To remove this trivial 
time dependency, the squared displacements are divided by the given time interval τ. The 

resulting expression ( ) ττ /)( 2r∆  has the dimension of a diffusion coefficient, but it is a 

fluctuating quantity e.g. along a trajectory. Even after averaging, it is in general still 
dependent on τ. This could be understood by considering an inhomogeneous diffusion 
process since the size of the squared displacements is subject to the diffusion coefficient 
as well. Depending on the dwell times in the layers and their relation to the measurement 
time, transitions between the layers might be conducted. Thus, during the diffusion 
between two measured positions several distinct diffusion coefficients affect the 
displacement. This effect will be reduced if the measurement time is very small compared 
to the dwell time in the current layer. Even though, the displacements observed in an 
inhomogeneous diffusion process are still governed by different diffusion coefficients. 

The properties of a diffusion process are analyzed from the observed displacements 
by a new method. For that reason, a probability density ),( τDp  is established by the 

distribution of the scaled squared displacements. Formally, it is given by 

 
( )










 ∆−=
τ

τδτ
d
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2

)(
),(
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, (8) 

where K  denotes a time or an ensemble average, both coinciding if the system is 

ergodic. Naturally, the probability density is normalized since 

 ∫
∞

=
0

1d),( DDp τ  (9) 

is fulfilled for any ),( τDp . Furthermore, the probability densities can be used to 

calculate mean values and variances as well as higher moments and cumulants of their 
distribution. Experimental data approximate such a probability density by binning the 
samples in a normalized histogram. This can be generated from the experimental samples 
with little effort. 

The probability density of the scaled squared displacements offers several features. In 
general, it is dependent on the observation time τ since the squared displacements 
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comprise this dependency. By determining the first moment of the probability density, an 
ordinary diffusion coefficient 

 
( )

τ

τ
ττ

d
DDpDD

2

)(
d),()(

2

0

r∆
== ∫

∞

 (10) 

is obtained. In the limit 0→τ , )(τD  equals the diffusion coefficient appearing e.g. in 

the Fokker-Planck equation [9]. In the opposite limit ∞→τ , )(τD  is equal to the long-

term increase of the squared displacements appearing e.g. as the slope of the mean square 
displacement [2]. Thus, a connection between a microscopic diffusion coefficient in the 
Fokker-Planck equation and a macroscopic diffusion coefficient in mean square 
displacement calculations is established. 

 

In the special case of homogeneous diffusion processes the τ dependency in Eq. 10 
vanishes. Then, 0)( DD =τ  becomes independent of τ, and 0D  denotes the diffusion 

coefficient of the system. In accordance with this also )(),( DpDp =τ  becomes τ-

independent and can be expressed analytically. Dependent on the dimensionality d of the 
system, it can be easily calculated as 

 









−=

00
2

exp
1

2

1
)(

D

D

DD
Dp

π
 for 1=d  (11) 

Fig. 2: The probability density of scaled squared displacements exhibits a 
mono-exponential behavior in case of a homogeneous, two-dimensional 
diffusion process. The propagator is accordance with the histogram. 

 0.01

 0.1

 1

 10

 0  0.2  0.4  0.6  0.8  1

p(
D

)

D

probability density of scaled squared displacements
propagator of two-dimensional diffusion

6© 2009, M. Bauer
diffusion-fundamentals.org 11 (2009) 104, pp 1-14



 

 









−=

00

exp
1

)(
D

D

D
Dp  for 2=d  (12) 

and 

 









−










=

0

2

3

0 2

3
exp

3

2

1
)(

D

D
D

D
Dp

π
 for 3=d  (13) 

It is obvious, that the normalization Eq. 9 holds in all cases. 
For the investigated model of a bi-layer system, Eq. 12 for 2=d  is of special 

interest. Hence, the probability density features an exponential decay parameterized by 
the underlying diffusion coefficient. This behavior can be identified as a straight line in a 
log-linear plot. As an illustration, this is shown in Fig. 2 depicting a probability density of 
a homogeneous diffusion process. Therein, the mono-exponential behavior can clearly be 
identified. 

For a diffusion process involving dynamic heterogeneities the probability density 
exhibits a more complicated, non-exponential structure. The reason is the interference of 
distinct propagators caused by jumps. If the molecule changes its layer during the 
measurement time τ, the diffusion will take place with a mean diffusion coefficient 
corresponding to the involved layers. This mean originates from the weighting of the 
diffusion coefficients with the total dwell time in each layer with respect to the 
measurement time. Consequently, propagators which belong to intermediate diffusion 
coefficients are introduced contributing to the probability density. For this model it can 
be shown analytically that the probability density is not the superposition of two 
exponentials originating from the propagators of the diffusion coefficients in the layers. 
Thus, a multi-exponential fit according to the number of included layers does not yield 
appropriate results. Likewise static heterogeneities lead to a similar effect. 

Furthermore, the probability density of scaled squared displacements can be 
transformed into an integrated density 

 ∫
∞

′′=
D

DDpDP ,d),(),( ττ  (14) 

which offers other advantages. Conversely, the probability density ),( τDp  is the 

differentiated expression of a cumulative scaled squared step size distribution. Similarly, 
[10] analyzed ranked unscaled squared step size distributions. In [10] bi-exponential fits 
are used in order to estimate the diffusion coefficients. This seems to offer an easy 
approach to determine the parameters of the underlying system. However, since the 
probability density is strongly dependent on the measurement time τ in comparison to the 
dwell times, only for small τ appropriate results are obtained. For larger τ, resulting fit 
parameters can deviate significantly from the actual diffusion coefficients. Furthermore, 
the probability density of scaled squared displacements can also be used to analyze 
diffusion in channels as investigated in [11]. Due to the confinement of the particles the 
probability density may be described more appropriately by functional dependencies as in 
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Eq. 11 corresponding to one-dimensional diffusion processes. However, the dependency 
on the measurement time may not be neglected since it can lead to inappropriate results. 

3. Simulation of heterogeneous diffusion 
For the analysis of the diffusion process via scaled squared displacements artificial 

data are created by simulations. Therefore, a system consisting of two layers with 

diffusion coefficient 12
1 sm1.0 −=D  in the base layer and 12

2 sm0.1 −=D  in the second 

layer is used. This system contains only dynamic heterogeneities since no compartment is 
incorporated. The jump rates between the layers are varied leading to a change in the 
dwell times as well. Despite that, the equilibrium distribution between the layers 
remained constant as 

3
1

1 =π  and 
3
2

2 =π , respectively. According to Eq. 7, the given 

parameters yield a mean diffusion coefficient 12sm7.0 −=D  exactly. This value is used 

to verify the results from mean square displacement calculation as well as via the 
probability density ),( τDp . 

The diffusion simulation is accomplished with 1000 time steps of time interval 0.01 s 
generating a trajectory of total length 10 s. Moreover, 1000 such trajectories are created 
simultaneously. It should be noted, that the distribution of the random walkers between 
the two layers is initialized with the corresponding stationary distribution. Thus, a 
transient behavior is omitted, because the walkers do not have to distribute among the 
layers. The analysis investigates the dynamical behavior of an equilibrated system. 

For the determination of the scaled squared displacements different measurement 
times are investigated, where τ=0.05 s is chosen as the smallest one. It resembles a frame 
rate of 20 frames per second in video microscopy. Due to the discrete time step of the 
simulation up to five jumps are allowed within this measurement time. Indeed depending 
on the jump rates between the layers this is more or less likely. 

During the simulation all occurring squared displacements are gathered. They are 
scaled by the corresponding measurement time τ and divided by a dimensionality factor 
of 4 due to the two-dimensional diffusion process. In total, 1 million scaled squared 
displacements are captured. They are grouped in a histogram consisting of 100 equally 
spaced bins. After the simulation has finished, the histogram gets normalized to obtain a 
probability density. 

4. Investigation of simulated data 
In a first simulation, the dependency of the probability density of scaled squared 

displacements on the measurement time τ is investigated. For this purpose, measurement 
time and transition rates are chosen to emphasize the properties of this dependency. In 
particular, the transition rate from the base layer to the second layer equals 

0.821 =w  jumps per second. In other words, on average this transition takes place after 

s125.01̂ =t  of diffusion in the base layer. The backward jump rate into the base layer is 

given by 0.412 =w  jumps per second. Thus, the mean dwell time in the second layer is 

equal to s25.02̂ =t . According to Eq. 6, the proportion of the jump rates to their sum 
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results in the equilibrium distribution between the layers and satisfies the specified 1π  

and 2π . Based on the same simulation data, the squared displacements are gathered using 

different measurement times τ. Starting with τ=0.05 s, almost no layer transition is 
accomplished between the observed positions. Thus, the diffusion processes in each layer 
are separated quite properly. However, by increasing τ to 0.2 s it gets into the critical 
range of the dwell times. As a consequence, the diffusion between two observed positions 
can have changed its coefficient several times. This effect is even more amplified for 
larger τ. Due to several layer transitions only a mean diffusion coefficient is observed. 

 

The probability densities belonging to τ=0.05 s, τ=0.2 s and τ=1.0 s are depicted in 
Fig. 3. Despite the scaling of the squared displacements to remove their trivial time 
dependency their densities are still influenced by τ. By means of the fluctuations in the 
probability density of the scaled squared displacements, heterogeneities in an investigated 
system can be detected easily. Those fluctuations, e.g. the variance of the probability 
density, can be quantified through the calculation of higher moments analogous to Eq. 10. 
By averaging over those fluctuations e.g. in mean square displacement calculations, 

Fig. 3: The probability density of scaled squared displacements reveals a non-
trivial dependency on the measurement time τ. The non-exponential decay 
converges to an exponential behavior in the limit τ to infinity. Hence, only for 
small τ heterogeneous diffusion is distinguishable from homogeneous one. 
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information about heterogeneities is eliminated. It can be derived analytically, that for 
∞→τ  the probability density exhibits a convergence to a mono-exponential decay 

parameterized by the mean diffusion coefficient D  of the system as given by Eq. 7. In 
Fig. 3 it is obvious that the non-exponential decay converges to a mono-exponential 
behavior for increasing τ. Simultaneously, the values of the density are adapted since the 
histogram still has to be normalized to 1 according to Eq. 9. As discussed previously, the 
probability densities are dependent on τ in a non-trivial way. The reasons are the 
intermediate propagators, which govern the diffusion of the molecules during 
observation. In the limit of infinite τ, the probability density resembles that of a 
homogeneous diffusion process complicating a distinction. However, for small τ the 
probability density of scaled squared displacements of an inhomogeneous diffusion 
process can be distinguished from that of a homogeneous one without difficulty. 

In a second step, the first moments of the probability densities are verified to be 

equivalent to the mean diffusion coefficient D . This is confirmed by multiplying each 
histogram bin's area, which is equal to the probability, with its corresponding scaled 
squared displacement. Finally, it is summed over all these products. For the three 
different τ mean diffusion coefficients of 0.705 m2s-1, 0.698 m2s-1 and 0.699 m2s-1 are 
obtained respectively. As expected, the values are independent of τ and in good 
agreement with the analytically predicted value. 

 

Fig. 4: The commonly used mean square displacement versus measurement 
time τ can be fitted with a linear function. The fit parameter yields the mean 
diffusion coefficient. Due to the involved averaging, the heterogeneities of the 
system are obscured in contrast to Fig. 3. 
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Moreover, for the same transition rates the mean square displacement ( )2)(τr∆  

versus τ  is depicted in Fig. 4. The uniform slope is a consequence of the initial 
equilibrium distribution between the layers omitting any transient behavior. Thus, the 
dependency of the mean square displacement on the measurement time τ  does not reveal 
any heterogeneity of the system. In contrast, the probability density of the scaled squared 
displacements clearly exposes this dependency as presented in Fig. 3. This allows the 
detection of an inhomogeneous diffusion process. 

To validate the mean diffusion coefficient, a fit of the mean square displacement is 
calculated as illustrated in Fig. 4. The fitted value of 0.709 m2s-1 deviates only slightly 
from the analytical value. Thus, the method of determining the first moment of the 
probability density yields the same value as by mean square displacement calculation. 
However, to obtain an accurate value for the fit, large τ are necessary requiring 
sufficiently long trajectories [2]. In contrast, for the probability density of scaled squared 
displacements only short segments of trajectories are sufficient, and the mean diffusion 
coefficient can be calculated precisely. 

 

In general, the propagator of the bi-layer system is not the superposition of the two 
propagators belonging to the diffusion processes in the layers. This becomes obvious 
especially in the limit of infinite τ, where the probability density reveals a mono-

Fig. 5: The probability density of the observed scaled squared displacements 
for measurement time τ=0.2 s does still not show a mono-exponential 
behavior. Due to the dwell times of the layers being in the same range as τ, the 
probability density cannot be approximated by a superposition of the two 
densities belonging to the layers. The deviations increase with larger τ, and 
thus a bi-exponential fit will lead to inappropriate results. 
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exponential behavior. This cannot be accomplished by a weighted superposition of two 
different mono-exponentially decaying densities. To illustrate this, the existing deviation 
is depicted in Fig. 5. For a measurement time τ=0.2 s, which is approximately in the 
range of the dwell times, the histogram and the superposition of the densities modelling 
two separate diffusion processes differ significantly. Hence, the propagator of the full 
system cannot be expressed by superimposing the two propagators of the diffusion 
processes in the layers. The reason lies in the change of the diffusion coefficient caused 
by layer transitions. As a consequence, a bi-exponential fit could not generate appropriate 
results for the involved diffusion coefficients and has to be avoided. This has to be 
considered for experimental data, since the dwell times in the layers are often unavailable 
preventing an accurate estimation of fitted diffusion coefficients. 

 

In another simulation the transition rates of the bi-layer system are decreased. They 
are defined in a way to suppress fast oscillating layer transitions. In particular, jump rates 
of 2.021 =w  and 1.012 =w  jumps per second result in mean dwell times in each layer of 

s51̂ =t  and s102̂ =t , respectively. Due to the long dwell times compared to the short 

measurement time τ=0.05 s, the predominant part of the observed squared displacements 
does not include any layer transition. The observation detects apparently separated 
diffusion processes in each layer as though their interference vanishes. Therefore, the 
probability density can be described by a superposition of the propagators corresponding 

Fig. 6: The probability density of the observed scaled squared displacements 
from a diffusion process with dynamic heterogeneity deviates from a mono-
exponential decay. Due to small measurement time τ compared to the dwell 
times, the density can be approximated appropriately by the superposition of 
the densities which belong to the two diffusion coefficients of the system. 
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to the two diffusion coefficients in a good approximation. The weights of the propagators 
are defined by the equilibrium distribution between the associated layers as given in 
Eq. 6. 

The probability density of the observed scaled squared displacements is depicted in 
Fig. 6. The effect of the dynamic heterogeneity becomes apparent since the probability 
density deviates from the mono-exponential decay obtained by homogeneous diffusion as 
shown in Fig. 2. Furthermore, for short measurement times τ compared to the dwell times 
in the layers, the diffusion processes can be separated. Caused by the long dwell times in 
each layer, the density of the heterogeneous system is reasonably well approximated by 
the superposition of the densities belonging to two separate diffusion processes. The 
accordance of the superimposed densities with the normalized histogram is illustrated in 
Fig. 6. Consequently, this enables an estimation of the diffusion coefficients via a bi-
exponential fit, which is quite common in the diffusion community. 

5. Conclusion 
A new method was presented in order to analyze diffusing molecules from video 

microscopy. It is based on scaled squared displacements and their probability density. 
This offers an advantage for experimental data since short trajectories are sufficient. 
Based on numerical simulations the proposed method could be verified. Featuring an 
efficient calculation, it reproduced mean diffusion coefficients as obtained by the mean 
square displacement. Furthermore, the probability density of scaled squared 
displacements contains more information of the observed diffusion process than mean 
square displacement data since the full distribution and not only its first moment is 
involved. This becomes apparent in the non-trivial time dependency of the probability 
density of scaled squared displacements. Thus, the microscopic investigation of the 
diffusion process enables the detection of heterogeneities. In future research, further 
features existing in this probability density have to be explored. Especially, an auto-
convolution of the probability density promises refined possibilities to detect the involved 
diffusion coefficients. 

A region-dependent capturing of scaled squared displacements offers access to 
diffusion processes influenced by compartments. Thus, generating a map of probability 
densities of scaled squared displacements seems to be an encouraging approach to detect 
and analyze both dynamic and static heterogeneities. 
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