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Abstract

Diffusion processes in ultra-thin liquid films olpged by video microscopy reveal a
complex behavior. In contrast to homogeneous ddfys dynamic and static
heterogeneities are induced by layer transitiond aompartments with differing
diffusion coefficients, respectively. The objectivé this research is the detection and
distinction of such heterogeneities as well as malyasis of the underlying processes.
Hence, a new method is proposed establishing aapiiity density of scaled squared
displacements. This probability density allows #osimple and well-defined calculation
of time-dependent diffusion coefficients and itscfuations. Furthermore, by simulating
a heterogeneous diffusion process these resultgesfeed and compared to mean square
displacement calculations. By means of the simdlgieobability density data, their
dependency on the parameters is illustrated andefuimplications are pointed out.

keywords: diffusion, dynamic and static heterogBneaicaled squared displacements

1. Introduction

Investigating diffusing molecules in liquid filmsybvideo microscopy offers an
interesting field of research. Within the liquidnfi the fluorescent molecules conduct a
three-dimensional diffusion process caused bysioltis with the particles of the liquid.
However, the three-dimensional trajectory is obsdnby video microscopy. The
resulting video of the diffusing molecules corresg® to the two-dimensional projection
of the actual movement. Thus, the projected trajgdiacks information about the third
dimension. As a consequence, a change in the thiménsion and therefore in the
diffusion properties of the molecules cannot beeobsd directly. Nevertheless, it
influences the molecule's projected trajectory anight be detected by improved
analysis.
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In an experimental setup, the projected positioa trhcked particle can be measured
directly. A recently developed tracking method [détermines the positions of the
molecules accurately even if blinking effects o thuorescent molecule interrupts its
visible trajectory. The position of the particlegigtracted at two times characterized by a
time differencer. It results from the observation time or the measient process. Thus
in video microscopy, the lower limit is given lry,,, <7, which is related to the inverse

of the frame rate. It represents the smallest vabt¢ variation in time for observing the
particles' movements. From the difference of the pesitions the corresponding squared
displacement is obtained by calculating

(ar@) = (e +n) -r@). (1)

Due to their close relation to diffusion coefficiersquared displacements are often used
for data analysis. In particular, squared displameinare averaged over tinteor over

all particles to obtain a mean square displacemeayh <(Ar(r))2> versusr. Then, the

slope of the mean square displacement is relatéttetdiffusion coefficient according to
the Einstein-Smoluchowski-equation [2]. As a restile mean diffusion coefficient of
the observed molecule can be determined.

In general, the method of mean square displacem@ntilations yields sufficient
information for homogeneous isotropic diffusion, e only one diffusion constant
exists. However, diffusing molecules in ultra-tHiquid films reveal a more complex
behavior [3]. A convincing picture is given in [dgscribing a layering of liquids at solid
interfaces leading to inhomogeneous diffusion. A®asequence, a layer model for such
systems was developed. It involves a layer-depandiémsion coefficient. Further, the
molecules have the ability to switch between thyeia during their diffusion process. In
a projection as performed in experiments, the jumgpbetween layers appears as a
dynamical, random switching between different diffun coefficients. This process
results in so-called dynamic heterogeneities. Megeorecent experimental observations
indicate the existence of impurities on the substrthey result in an altered diffusion
coefficient in such a region due to gliding viaasibl bridging [5] or a slowdown of
diffusion [6,7]. Thus, the diffusion process is diahally influenced by static
heterogeneities. A correct analysis of the obsermwtdmogeneous diffusion process
constitutes the necessity to detect static and dimbeterogeneities. Thus, besides mean
square displacement calculations new methods havéet established in order to
distinguish between both inhomogeneities and ektregir parameters. The drawback of
determining mean square displacements lies in tiiermation loss caused by the
averaging procedure . It conceals the effects chbgehe existence of several different
diffusion coefficients.

To investigate the behavior of such an inhomogesesystem with N layers, a
simulation of the diffusion process is carried dite model is defined by

%pn(r,t)=§m)[wnmpm(r,t)—wmnpn(r,t)]+DnDan(r,o with mn0{1,...,N} (2)
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a system ofN partial differential equations for the probabiliédensities p,(r,t) for
finding the particle at timet at position r =(x,y) in the n-th layer. In Eq. 2,
w,,denotes the transition rate from lay@rto layern, and D, is the diffusion constant

in the n-th layer. The mean dwell timg, in layer m is determined by the transition
rates via

t :[anm}_ : (3)

Hence, the movement of a diffusing molecule is nedidy ordinary two-dimensional
diffusion within a layer interrupted by jumps betemelayers governed by a master
equation. Since in experiment two-dimensional prigas of this process are observed,
the statistics of these observations are govergeatebprojected probability density

p(rt) =Y py(r.0). 4)

This projection of the diffusion process onto tieo-tdimensional plane and the jump
process between layers with distinct diffusion &oefnts induce the dynamic
heterogeneity. Furthermore, the static heteroggi®itnodeled by a compartment with a
different diffusion coefficient in the base layesxt to the substrate. If a molecule enters
this particular region it diffuses with the giveiffdsion coefficient deviating from the
ordinary coefficient in the base layer.

For a system comprising only two layers furtherlgiaal results can be deduced. By
integrating Eq. 2 over all positions within a layer, as a result the master equation

a0 =l = oep 0] with {2 (5)

is obtained describing a two-state Markov proc&he. equilibrium layer probabilitiess,
and 7z, are easily obtained from detailed balance as

= Wi, and 7z, = Wa1

Wiy + Woy W, + Wy

(6)

With this equilibrium distribution, the mean diffaa coefficient of the bi-layer system
as obtained e.g. from a long-term measurementeofrtban square-displacement, can be
calculated as

D =D,z + D, (7)

a weighted sum of the diffusion coefficients of the layers.

In conclusion, the three-dimensional diffusion me& is modeled by a two-
dimensional random walk and an additional jump pssc Due to the projection and
embedded compartments, the simulated data contaih llynamic and static
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heterogeneities. Therefore, it resembles the inlygemeous diffusion process observed
experimentally. Consequently, improved investigatimethods and related findings
tested with the simulated data can be appliedabengperimental data.

A model of a bi-layer system with thickness 2-10 mamillustrated in Fig. 1. The
dynamic heterogeneity originates from the layerth wieir distinct diffusion coefficients.
Furthermore, the base layer next to the subst@tgpdses a compartment with a third
diffusion coefficient. Hence, a model with bothtstaand dynamic heterogeneities is
established.

Fig. 1: The bi-layer system is used for the simulation adofmolecule's
trajectory. Dynamic heterogeneity is induced by the layers with their
distinct diffusion coefficients. Within the red-coed compartment in the base
layer next to the substrate the diffusion can balifrem providing a static
heterogeneit

It is the objective of this research to developaatbed methods for the analysis of
such inhomogeneous diffusion processes. This isssaty since investigations based on
homogeneous diffusion are no longer appropriatehéterogeneities are involved.
However, investigations in this article are res#itto dynamic heterogeneities since
static heterogeneities will be covered in futurerkvd-urthermore, a connection to the
commonly used analysis via mean square displacemergstablished. To validate the
theoretical considerations, the proposed methogie baen applied to the diffusion of
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Rhodamine B dye molecules in ultra-thin liquid fimof TEHOS and have been
compared to previous results [8].

2. Probability density of scaled squared displacements

The measurement of squared displacements represeatamon approach to analyze
the properties of a diffusion process. Howeverseéhsquared displacements are directly
related to the time differencefor which they are measured. Since the variancthef
particles' positions of a Wiener process grows witlreasing time interval, the particles
can explore a larger area. Exactly this is achidwedncreasing the time between two
observations of the particle. Hence, the squarsdlaliements depend amand will be
larger for longer measurement time intervals ordoframe rates. To remove this trivial
time dependency, the squared displacements amediliy the given time interval The

resulting expressiorﬁAr(r))zlr has the dimension of a diffusion coefficient, iuts a

fluctuating quantity e.g. along a trajectory. Evafiter averaging, it is in general still
dependent orr. This could be understood by considering an inhgeneous diffusion
process since the size of the squared displacernsestbject to the diffusion coefficient
as well. Depending on the dwell times in the layard their relation to the measurement
time, transitions between the layers might be coteti Thus, during the diffusion
between two measured positions several distinctusidn coefficients affect the
displacement. This effect will be reduced if theasirement time is very small compared
to the dwell time in the current layer. Even thoutfte displacements observed in an
inhomogeneous diffusion process are still govetmedifferent diffusion coefficients.

The properties of a diffusion process are analyfrech the observed displacements
by a new method. For that reason, a probabilitysitgnp(D,7) is established by the

distribution of the scaled squared displacemerdemglly, it is given by

p(D,7) =<5[D—%j>, (8)

where <> denotes a time or an ensemble average, both doigcif the system is
ergodic. Naturally, the probability density is n@limed since

]:p(D,r) db =1 (9)

is fulfilled for any p(D,r). Furthermore, the probability densities can beduste

calculate mean values and variances as well aghigloments and cumulants of their
distribution. Experimental data approximate suchrabability density by binning the
samples in a normalized histogram. This can bergésd from the experimental samples
with little effort.

The probability density of the scaled squared dispinents offers several features. In
general, it is dependent on the observation timsince the squared displacements
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comprise this dependency. By determining the firement of the probability density, an
ordinary diffusion coefficient

((ar )

2 r (10)

D(r) =]1D p(D,7) dD =

is obtained. In the limitt — 0, D(7) equals the diffusion coefficient appearing e.g. in

the Fokker-Planck equation [9]. In the oppositeitim — o, D(7) is equal to the long-

term increase of the squared displacements apgegugn as the slope of the mean square
displacement [2]. Thus, a connection between aasmpic diffusion coefficient in the
Fokker-Planck equation and a macroscopic diffusiooefficient in mean square
displacement calculations is established.
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Fig. 2: The probability density of scaled squared dispieests exhibits a
mono-exponential behavior in case of a homogenedws;dimensional
diffusion process. The propagator is accordanche tli histogram.

In the special case of homogeneous diffusion psmsether dependency in Eq. 10
vanishes. ThenD(7) = D, becomes independent @f and D, denotes the diffusion
coefficient of the system. In accordance with thiso p(D,7) = p(D) becomesr

independent and can be expressed analytically. ke on the dimensionalityof the
system, it can be easily calculated as

p(D) = ﬁ%ex;{—%j for d =1 (12)
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_1 _D =
p(D)—Fex;{ DJ ford=2 (12)

0 0

and

o(D) = %(DEJZ\/B ex;{—gDRJ ford=3 (13)

It is obvious, that the normalization Eqg. 9 holdsll cases.

For the investigated model of a bi-layer system, BEfjfor d =2 is of special
interest. Hence, the probability density featurasegponential decay parameterized by
the underlying diffusion coefficient. This behavian be identified as a straight line in a
log-linear plot. As an illustration, this is shownFig. 2 depicting a probability density of
a homogeneous diffusion process. Therein, the neaponential behavior can clearly be
identified.

For a diffusion process involving dynamic hetercgjiges the probability density
exhibits a more complicated, non-exponential stmgctThe reason is the interference of
distinct propagators caused by jumps. If the md&eathanges its layer during the
measurement time, the diffusion will take place with a mean diffosi coefficient
corresponding to the involved layers. This meaminates from the weighting of the
diffusion coefficients with the total dwell time ieach layer with respect to the
measurement time. Consequently, propagators whidbng to intermediate diffusion
coefficients are introduced contributing to the hmbility density. For this model it can
be shown analytically that the probability densisy not the superposition of two
exponentials originating from the propagators @ thffusion coefficients in the layers.
Thus, a multi-exponential fit according to the n@nbf included layers does not yield
appropriate results. Likewise static heterogereigad to a similar effect.

Furthermore, the probability density of scaled s$gdadisplacements can be
transformed into an integrated density

P(D,1) =]: p(D',r) dD’, (14)

which offers other advantages. Conversely, the gty density p(D,7) is the

differentiated expression of a cumulative scaledbsgd step size distribution. Similarly,
[10] analyzed ranked unscaled squared step singbdisons. In [10] bi-exponential fits
are used in order to estimate the diffusion coeffits. This seems to offer an easy
approach to determine the parameters of the undgrlgystem. However, since the
probability density is strongly dependent on thexsueement time in comparison to the
dwell times, only for small appropriate results are obtained. For largeresulting fit
parameters can deviate significantly from the datiiffusion coefficients. Furthermore,
the probability density of scaled squared displameis can also be used to analyze
diffusion in channels as investigated in [11]. Daghe confinement of the particles the
probability density may be described more approgifeby functional dependencies as in
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Eq. 11 corresponding to one-dimensional diffusioocpsses. However, the dependency
on the measurement time may not be neglected ginaa lead to inappropriate results.

3. Simulation of heter ogeneous diffusion

For the analysis of the diffusion process via stagquared displacements artificial
data are created by simulations. Therefore, a ystensisting of two layers with

diffusion coefficient D, = 0.1m°s™ in the base layer an®, =10m’™ in the second

layer is used. This system contains only dynamierogeneities since no compartment is
incorporated. The jump rates between the layersvared leading to a change in the
dwell times as well. Despite that, the equilibriugistribution between the layers

remained constant as; =+ and 77, =%, respectively. According to Eq. 7, the given

parameters yield a mean diffusion coefficiddt= 0.7m?s™ exactly. This value is used

to verify the results from mean square displacenmaitulation as well as via the
probability densityp(D, 1) .

The diffusion simulation is accomplished with 1afi@e steps of time interval 0.01 s
generating a trajectory of total length 10 s. Me®p 1000 such trajectories are created
simultaneously. It should be noted, that the digtion of the random walkers between
the two layers is initialized with the corresporglistationary distribution. Thus, a
transient behavior is omitted, because the walklersiot have to distribute among the
layers. The analysis investigates the dynamicahbieh of an equilibrated system.

For the determination of the scaled squared disphents different measurement
times are investigated, where0.05 s is chosen as the smallest one. It reseratfiesne
rate of 20 frames per second in video microscopye B the discrete time step of the
simulation up to five jumps are allowed within thigeasurement time. Indeed depending
on the jump rates between the layers this is motess likely.

During the simulation all occurring squared displaents are gathered. They are
scaled by the corresponding measurement tiraed divided by a dimensionality factor
of 4 due to the two-dimensional diffusion procelss.total, 1 million scaled squared
displacements are captured. They are grouped istagham consisting of 100 equally
spaced hins. After the simulation has finished,histogram gets normalized to obtain a
probability density.

4. Investigation of simulated data

In a first simulation, the dependency of the pralitgbdensity of scaled squared
displacements on the measurement timie investigated. For this purpose, measurement
time and transition rates are chosen to emphabzeitoperties of this dependency. In
particular, the transition rate from the base layer the second layer equals
w,, =80 jumps per second. In other words, on averagettaissition takes place after
ﬂ: 0.125s of diffusion in the base layer. The backward jurate into the base layer is
given by w, = 40 jumps per second. Thus, the mean dwell time ins#wnd layer is

equal tot, = 025s. According to Eq. 6, the proportion of the jumgesato their sum

© 2009, M. Bauer 8
diffusion-fundamentals.org 11 (2009) 104, pp 1-14



results in the equilibrium distribution between tlagers and satisfies the specified

and 7z, . Based on the same simulation data, the squaspthdements are gathered using
different measurement times Starting with 7=0.05 s, almost no layer transition is
accomplished between the observed positions. Thagiffusion processes in each layer

are separated quite properly. However, by incrgasito 0.2 s it gets into the critical

range of the dwell times. As a consequence, thagiiin between two observed positions
can have changed its coefficient several timess Hffiiect is even more amplified for
larger 7. Due to several layer transitions only a mearudifin coefficient is observed.

10

T

1 dwell times: £,=0.125, £,=0.25

p(D,1.0)

0.1

0.01

>
p(D.0.2)
\
o
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Fig. 3: The probability density of scaled squared dispiaests reveals a non-
trivial dependency on the measurement timerhe non-exponential decay
converges to an exponential behavior in the linii infinity. Hence, only for
smallt heterogeneous diffusion is distinguishable frormhgeneous one.

The probability densities belonging t&0.05 s,7=0.2 s andr=1.0 s are depicted in
Fig. 3. Despite the scaling of the squared displesds to remove their trivial time
dependency their densities are still influencedrbBy means of the fluctuations in the
probability density of the scaled squared displameis) heterogeneities in an investigated
system can be detected easily. Those fluctuatiens, the variance of the probability
density, can be quantified through the calculatbhigher moments analogous to Eq. 10.
By averaging over those fluctuations e.g. in megnase displacement calculations,
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information about heterogeneities is eliminatedcdh be derived analytically, that for
T - o the probability density exhibits a convergenceatanono-exponential decay

parameterized by the mean diffusion coefficiént of the system as given by Eq. 7. In
Fig. 3 it is obvious that the non-exponential decayverges to a mono-exponential
behavior for increasing. Simultaneously, the values of the density argotathsince the
histogram still has to be normalized to 1 accordm&q. 9. As discussed previously, the
probability densities are dependent @nin a non-trivial way. The reasons are the
intermediate propagators, which govern the diffnsiof the molecules during
observation. In the limit of infiniter, the probability density resembles that of a
homogeneous diffusion process complicating a distn. However, for smallr the
probability density of scaled squared displacemeaftaan inhomogeneous diffusion
process can be distinguished from that of a homemgesone without difficulty.

In a second step, the first moments of the proltpldensities are verified to be

equivalent to the mean diffusion coefficieBt. This is confirmed by multiplying each
histogram bin's area, which is equal to the prdlgbiwith its corresponding scaled
squared displacement. Finally, it is summed ovértlese products. For the three
different r mean diffusion coefficients of 0.705’s1, 0.698 mis® and 0.699 ™ are
obtained respectively. As expected, the values iadependent ofr and in good
agreement with the analytically predicted value.

+  mean square displécement
mean square displacement fit to 4*D*t with D=0.709 > g

257}

2 | dwell times: t;=0.125, t,=0.25

(]
N/-\
£ 15}
1t +++++"+++
057}
0 s s s s
0 0.2 0.4 0.6 0.8 1

T

Fig. 4: The commonly used mean square displacement vensasurement

time 7 can be fitted with a linear function. The fit pareter yields the mean
diffusion coefficient. Due to the involved averagjrthe heterogeneities of the
system are obscured in contrast to Fig. 3.
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Moreover, for the same transition rates the mearargq dispIacemen((Ar(r))2>

versus 7 is depicted in Fig. 4. The uniform slope is a @ngence of the initial
equilibrium distribution between the layers omigtiany transient behavior. Thus, the
dependency of the mean square displacement onghsurement time does not reveal
any heterogeneity of the system. In contrast, tiebability density of the scaled squared
displacements clearly exposes this dependency esemied in Fig. 3. This allows the
detection of an inhomogeneous diffusion process.

To validate the mean diffusion coefficient, a ffttbe mean square displacement is
calculated as illustrated in Fig. 4. The fitteduelof 0.709 rfs* deviates only slightly
from the analytical value. Thus, the method of duieing the first moment of the
probability density yields the same value as by msguare displacement calculation.
However, to obtain an accurate value for the firgé r are necessary requiring
sufficiently long trajectories [2]. In contrast,rfthe probability density of scaled squared
displacements only short segments of trajectoniessafficient, and the mean diffusion
coefficient can be calculated precisely.

10 — — T - T T
probability density of scaled squared displacements 1=0.2 E===3
S superposition of densities belonging to layers
1 \_ dwell times: £,=0.125, t,=0.25 -
N NG
! NI
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0.01 . .
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D

Fig. 5: The probability density of the observed scaledasgd displacements
for measurement time=0.2s does still not show a mono-exponential
behavior. Due to the dwell times of the layers bemthe same range asthe
probability density cannot be approximated by aespgpsition of the two
densities belonging to the layers. The deviationsdase with larget, and
thus a bi-exponential fit will lead to inappropgaesults.

In general, the propagator of the bi-layer systemdt the superposition of the two
propagators belonging to the diffusion processethénlayers. This becomes obvious
especially in the limit of infiniter, where the probability density reveals a mono-
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exponential behavior. This cannot be accomplishead lveighted superposition of two
different mono-exponentially decaying densities.illigstrate this, the existing deviation
is depicted in Fig. 5. For a measurement tim®.2 s, which is approximately in the
range of the dwell times, the histogram and theemagsition of the densities modelling
two separate diffusion processes differ signifiantience, the propagator of the full
system cannot be expressed by superimposing theptepagators of the diffusion
processes in the layers. The reason lies in thegehaf the diffusion coefficient caused
by layer transitions. As a consequence, a bi-expiadeit could not generate appropriate
results for the involved diffusion coefficients ahds to be avoided. This has to be
considered for experimental data, since the dwabs in the layers are often unavailable
preventing an accurate estimation of fitted diffurscoefficients.

10 . v T T N T T T
probability density of scaled squared displacements 1=0.05 ====
\ superposition of densities belonging to layers
1 \ dwell times: £,=5.0, £,=10.0 1
\~
~~ \N‘
n NN
o NN
) 0.1 TN
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o
0.01
0.001 .
0 1 2 3 4 5 6 7 8
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Fig. 6: The probability density of the observed scaledasgd displacements
from a diffusion process with dynamic heterogeneigyiates from a mono-
exponential decay. Due to small measurement timsempared to the dwell
times, the density can be approximated appropyidiglthe superposition of
the densities which belong to the two diffusionfioents of the system.

In another simulation the transition rates of tidaper system are decreased. They
are defined in a way to suppress fast oscillataygi transitions. In particular, jump rates
of w,; =02 and w, = 0.1 jumps per second result in mean dwell times irhdager of

f1255 and f2 =10s, respectively. Due to the long dwell times complate the short

measurement time=0.05 s, the predominant part of the observed sgudisplacements

does not include any layer transition. The obsé@watietects apparently separated
diffusion processes in each layer as though theerference vanishes. Therefore, the
probability density can be described by a supetijposof the propagators corresponding
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to the two diffusion coefficients in a good appmation. The weights of the propagators
are defined by the equilibrium distribution betwethie associated layers as given in
Eqg. 6.

The probability density of the observed scaled sgpialisplacements is depicted in
Fig. 6. The effect of the dynamic heterogeneitydmees apparent since the probability
density deviates from the mono-exponential decagined by homogeneous diffusion as
shown in Fig. 2. Furthermore, for short measurertiarés r compared to the dwell times
in the layers, the diffusion processes can be atgdrCaused by the long dwell times in
each layer, the density of the heterogeneous systeéaasonably well approximated by
the superposition of the densities belonging to separate diffusion processes. The
accordance of the superimposed densities with shealized histogram is illustrated in
Fig. 6. Consequently, this enables an estimatiothefdiffusion coefficients via a bi-
exponential fit, which is quite common in the d#fon community.

5. Conclusion

A new method was presented in order to analyzeudiffy molecules from video
microscopy. It is based on scaled squared displentsmand their probability density.
This offers an advantage for experimental dataesisicort trajectories are sufficient.
Based on numerical simulations the proposed mettmdd be verified. Featuring an
efficient calculation, it reproduced mean diffusicoefficients as obtained by the mean
square displacement. Furthermore, the probabilignsdy of scaled squared
displacements contains more information of the olesk diffusion process than mean
square displacement data since the full distributmd not only its first moment is
involved. This becomes apparent in the non-tritiiade dependency of the probability
density of scaled squared displacements. Thus,ntioeoscopic investigation of the
diffusion process enables the detection of hetereigies. In future research, further
features existing in this probability density hateebe explored. Especially, an auto-
convolution of the probability density promisesimefl possibilities to detect the involved
diffusion coefficients.

A region-dependent capturing of scaled squaredlatisments offers access to
diffusion processes influenced by compartments.sTlgenerating a map of probability
densities of scaled squared displacements seelresdo encouraging approach to detect
and analyze both dynamic and static heterogeneities
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