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Abstract

The glassy wormlike chain model is a highly successful phenomenological
model recently introduced to describe anomalously slow subdiffusive dynam-
ics in biopolymer networks and living cells. Here we extend this model by
proposing a generic scheme how to include nonlinear plastic effects by in-
troducing the possibility of force-dependent opening and closing of internal
bonds. Further, we discuss physiological implications of this bond kinetics.
Stability arguments lead us to the postulation of a “physiological sheet” in the
parameter space. This sheet defines the set of parameters characterizing cells
which are flexible enough to perform biological tasks while still being able to
bear external perturbations characteristic of their surroundings and their in-
ternally generated prestress without damage. At the end of this contribution,
we speculate about the connection between prestress and cell stiffness and
about the mechanism by which the cell adapts to its mechanical environment.

1 Introduction
To get a qualitative impression of the mechanical response of living tissue simply
pinch your own cheeks. Only quite recently, it has become possible to track the
characteristic mechanical properties of living tissue [1] down to the level of indi-
vidual cells. Among the most salient reproducible features observed are a quite
broad linear response followed by strain stiffening [2], slow anomalous dynamics
and power-law rheology [3], inelastic creep [4], and a fluidization response to tran-
sient stretch [5]. With regard to the emergent character and the striking simplicity
and universality of these patterns the usual biological approach — namely to ex-
amine the specific interactions of a large number of molecules communicating with
each other via chemical signaling — appears somewhat inappropriate in this con-
text. Many physicists believe instead that it makes more sense to search for an
underlying mechanism able to generate all of the above mentioned properties in a
natural way from a minimum number of generic principles. In particular, based
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on a large body of data, Fabry, Fredberg and coworkers [3] have first argued that
a generic energy landscape picture originally developed to account for the subd-
iffusive dynamics of inanimate soft glassy materials [6] might well provide such a
powerful unifying principle able to explain many of the characteristic mechanical
features of living cells [7]. In a similar spirit, the glassy wormlike chain (GWLC)
model was recently proposed [8] as a possible ansatz to establish a more direct link
between these observations and the underlying molecular structure of the cytoskele-
ton. It suggests that the wormlike chain (WLC), a generic polymer model that has
been highly successful in the quantitative prediction of single molecule dynamics
[9] might provide a key to predict the macroscopic dynamical properties of biopoly-
mer networks[10] and whole cells [11] on the basis of certain generic features of the
(effective) interactions between protein fibers in the cytoplasm.

In this article, we extend this approach somewhat further with the intension to
account for the intrinsically inelastic (as opposed to merely viscoelastic) character
of the mechanics of living cells and tissues. Inspired by the mentioned experimental
observations, we introduce a simplistic model to condense what we consider the
most salient generic features of the mutual interactions of cytoskeletal protein fibers
into a small number of relevant parameters. Our model makes use of binding and
unbinding events of internal bonds and thus bears some similarity to the two-spring
model for focal adhesions [12, 13]. We identify constraints that should be obeyed
by these parameters in physiologically functional “rest states”, roughly defined in
an operational way as states adherent cells attain under physiological conditions
when no distinct external stimulus is present. A strong correlation between the
parameters of the functional state and the cell’s actively generated prestress is
established. On the basis of our model we arrive at a simple functional expression
for this correlation, which we expect to hold with great generality for adherent cells.

2 Generic Features of Cytoskeletal Interactions: A
Simple Model

The effective interactions between cytoskeletal polymers just alluded to are largely
unknown. Specializing our discussion to the most prominent stress bearing ele-
ment, F-actin, one can say that fiber-fiber interactions in vivo are mediated by a
large number of actin binding proteins, which comprise several types of reversible
crosslinkers favoring different types of filament assembly [14, 15, 16] and molec-
ular motors [17], which are able to strain or even move adjacent actin filaments
on demand. Even pure actin solutions in physiological buffer turn sticky at low
temperatures [10], let alone non-physiological conditions, under which probably all
proteins can be forced to aggregate. It is crucial to realize that the cytoplasm of a
living cell has to maintain a robust yet somewhat subtle balance between the mutual
attractions and repulsions of typically thousands of different types of proteins that
should neither undergo flocculation nor complete disintegration even under strongly
varying ambient conditions. A plausible way to achieve such a “loosely condensed



state” might be by strongly anisotropic (“patchy”) short ranged interactions. In
situations where, as in the cytoplasm of a cell, a large number of dissolved protein
fibers interact strongly, and one is interested in the overall mechanical behavior, it
should then be possible to model the fiber-fiber interaction as (i) strongly repulsive
below a hard core diameter representing the excluded volume, (ii) attractive just
somewhat beyond that range in order to effectively represent the sticky patches,
and (iii) repulsive at an even longer range to represent an overall electrostatic sta-
bilization. Finally, any two filaments in the cytoskeleton are subject to confinement
by a chemical potential effectively representing the mentioned loosely condensed
state of the cytoplasm.

Figure 1: Schematic sketch of a hypothetical interaction potential argued to rep-
resent generic features of the effective interactions of cytoskeletal filaments (not to
scale for better readability).

A sketch of a toy model of such an effective potential meant to describe the
binding and unbinding of adjacent cytoskeletal fibers and including all of these
features is shown in fig. 1. The height of the energy barrier is EkBT and we included
the possibility of a difference U in the binding energies of “bound” and “unbound”
states. The positions of the corresponding energy minima are labeled by xu and xb,
respectively, the position of the barrier maximum or transition state is referred to as
xb. At this point, it is not necessary to speculate about the appropriate values for
these positions. The scales in the sketch were chosen for better readability and are
not meant to mimic physical reality. In the following sections, we explore two major
implications of such a generic interaction potential for the mechanical properties of
the cell, namely the GWLC and the bond kinetics.



3 The Glassy Wormlike Chain
The viscoelastic dynamics of a single stiff biopolymer is very well described by
the wormlike chain (WLC) model; for a recent review, see [9]. To account for
the effects of interactions between polymers onto the viscoelastic dynamics of a test
polymer, a simple phenomenological scheme has recently been proposed [8]. The
basic idea is that the thermal undulations of the polymer backbone can relax freely
if their wavelength is smaller than the mean distance Λ between adjacent bonds
with the background network. This means that for the short wavelengths, the
WLC applies. For the longer wavelength undulations to relax, a number of bonds
proportional to the wavelength has to break open (and reform) first. The glassy
wormlike chain (GWLC) model assigns an Arrhenius factor exp [E(λ/Λ− 1)] to the
corresponding increase in the bare WLC relaxation time. Bending undulations of
wavelength λ = 2π/q are thus assumed to relax with a characteristic time τGWLC

q =
τq exp [E(λ/Λ− 1)], where τq is the WLC relaxation time for a free polymer in
pure solvent. This prescription gives rise to a viscoelastic relaxation and dynamic
response that appears WLC-like for short times, but exhibits a strongly subdiffusive
asymptotics for long times. This slowdown is not of the sort that could be subsumed
into a simple rescaling of the time axis. It is much more extreme. In fact, as
evident from the small apparent subdiffusive exponent [11], the whole relaxation is
stretched such that the overall relaxation and dynamic response becomes essentially
logarithmically slow (corresponding to an exponentiated time axis).

The GWLC has been shown to capture very well a large variety of experimental
observations such as the dynamic structure factor of pure actin solutions [10] and
the apparent power-law rheology of adherent cells [11]. Both of these observations
concern the anomalous Browninan dynamics in the linear response regime. How-
ever, there are some further consequences of the hypothetic interaction potential
discussed above, which have so far not been exploited in the GWLC model, and
which we expect to become highly relevant for the mechanical and dynamical re-
sponse of stiff polymer networks and the cytoskeleton of living cells if pushed into
the regime of nonlinear response. Not only does one have to extend the discussion
of the viscoelastic dynamics within GWLC to strong forces, then [10, 11]. One also
needs to take into account the bond breaking kinetics under mechanical load, which
will give rise to irreversible inelastic or plastic deformations (as opposed to purely
viscoelastic deformations), which have indeed lately been shown to play a crucial
role in single cell mechanics [18, 4]. This will be addressed in the following section.

4 Bond Kinetics under Load
To simplify the following discussion, we refrain, for the moment, from giving a
formulation of the full problem including the polymeric nature of the cytoskeletal
filaments, but focus on the crucial bond formation and bond breaking mechanisms
alone. To this end, we turn back to the simple potential model outlined in Sec. 2.



Of course, to eventually arrive at a complete faithful description of the mechani-
cal behavior of cytoskeletal filament networks and whole cells, the inelastic bond
breaking dynamics will have to be integrated with the viscoelastic aspects contained
in the GWLC model as well as with some aspects of network geometry [19] into a
somewhat cumbersome formalism. Yet, some key elements of the inelastic response
of such a “complete” mechanical minimal model can already be delineated by study-
ing the bond formation process in isolation, which is the strategy pursued in the
remainder.

To start with, consider, in a mean-field approximation, the potential sketched
in Fig. 1 as the energy landscape explored by an individual test polymer. In the
same spirit as in the conventional tube model [20] or in the GWLC [8], the other
polymers are meant to be subsumed into the mean-field potential. We now make
use of this assumption, and imagine our energy landscape to be populated by an
ensemble of bonds, the fractions νb and νu of which are in the bound and unbound
state, respectively. Assuming that the cell is not currently undergoing a remodeling
phase, both fractions are connected by a conservation equation

νb + νu = 1, (1)

dictated by the overall network geometry (or, equivalently, by the patchy character
of the sticky interactions mentioned above). Therefore, we will restrict ourselves to
the discussion of one variable ν ≡ νb, the relative occupation of the bound state.
This is obviously a crucial parameter for the elasticity of the network. If virtually
no bond is formed, the network will turn into a very weakly interacting viscous and
stress softening filament solution [19, 20]. If, on the other hand, all possible bonds
are formed, it turns into an effectively elastic and strongly stress stiffening network
[21] with little flexibility and a minimum of viscous creep.

A single polymer intersection can switch between the bound and unbound state
with transition rates k+ and k−. Assuming a simple first-order kinetics, these rates
determine the steady-state value

ν∗ =
k+

k− + k+
. (2)

of ν. Apart from the dependence on the potential parameters already introduced,
the rates will be sensitive to any internal or external forces present. Such forces
might be generated by molecular motors, polymerization forces, or induced by ex-
ternal mechanical deformations of the cell. One can imagine various ways of how the
force can influence the potential. Here, we choose the simplest and most commonly
assumed possibility[22], namely a tilting of the energy landscape. Furthermore, we
assume that the force favors unbinding, i.e. it tilts the potential in the mathemati-
cally negative sense of rotation. For sufficiently slowly changing forces, we can use
Kramers’ escape theory to express the rates as

k+ = τ−1
0 exp [−(E − U + f(xu − xt)/kT ] (3)



and
k− = τ−1

0 exp [−(E − f(xt − xb)/kT ] . (4)

The steady-state value of the occupation density (eq. (2)) now reads

ν∗ =
1

1 + exp [−(U − (xu − xb)f)/kT ]
(5)

The overall time constant τ0 will depend on the local diffusion constant and on the
particular shape of the potential in the minimum. For simplicity, we assumed the
same constant τ0 for both states.

We are aware of the fact that the applied force also may change the coordinates
xb, xt, and xu [23], which gives rise to a more complicated force dependence. The
essence of our argument would not be affected, however, so that we stick to the
above simple expressions. All that is said in the following could easily be adapted
to more general force dependencies.

5 The Physiological Sheet of Mechanical Stability
In the preceding section, we have introduced a simplistic effective description of a
generic physical structure that we argue to be highly relevant to cell mechanics, in
particular to reversible bond formation between cytoskeletal filaments. The physical
effect of mechanical force onto the bond formation was outlined. All the complicated
specific interactions usually emphasized when characterizing biological processes
have been neglected or were effectively subsumed into the shape of the potential
sketched in fig. 1. Therefore, this description might so far also be valid for an
inanimate network of sticky fibers (e.g. carbon nanotubes). In fact, as pointed
out in the preceding section, we refrain from including the physical properties of
filamentous networks in the discussion, at the present stage. Hence, the reader
may well wonder what kind of useful predictions we may hope to make at all from
such a simple model. We now want to exploit a very general feature of biological
systems, namely that their design has been subject to natural selection. Evolution
will select for the mechanical properties of a cell and its cytoskeleton such that they
are capable of withstanding the stress actively generated by the cell itself — the so-
called prestress [24] — and in its environment, e.g. by the surrounding tissue. At the
same time the cell has to be flexible enough to be able to move and reshape (or even
divide), and to maintain its connectivity with its possibly dynamic surroundings.
For example, a lung cell has to sustain a persistent periodic stretch of up to ten
percent without being damaged or otherwise impaired in its biological function,
throughout its whole lifetime. In fact, most of our cells experience at least some
mechanical repercussions of the pulsating blood flow in our veins. Translated into
the language of our generic potential, this means that under physiological conditions,
given a prestress f0, the parameters U and xu−xb should under most circumstances
better take values such that the ensemble of bonds is neither completely trapped in



the unbound state (disintegration of the cell) nor completely trapped in the bound
state (no plasticity or mobility). See fig. 2 for a schematic illustration. Now, this

Figure 2: Improper dependence of the potential parameters on the prestress leads
to a trapping of the ensemble either in the closed state (left panel) or in the open
state (right panel).

implies that if a cell is in a functional rest state as introduced above, with parameters
f0, Uf0 , and (xu − xb)f0 , and another cell is functional under a different prestress
f1, we expect the parameters of the second cell have to obey the relation

Uf0 − (xu − xb)f0f0 ' Uf1 − (xu − xb)f1f1. (6)

There are various ways to interpret this condition physiologically. In any case,
we will arrive at the conclusion that the prestress is correlated with structural
parameters in some way, after some major internal structural remodelling processes
have come to a temporal rest (that might typically be stable for many minutes
to hours), and to a lesser extent also during such processes. Let us consider the
example where (xu−xb) is fixed by geometry. Then, U would have to be correlated
with the rest prestress f0 according to

U ∝ fξ0 , (7)

with ξ ≈ 1. The larger the range of prestresses for which eq. (7) is supposed to
be valid, the closer the value of the exponent ξ should be to one. If, on the other
hand, U is for instance thought to be prescribed by the specific interaction enthalpy
of some crosslinking molecule, the inverse relationship must hold for (xu − xb).
If all parameters are variable, we can define a “physiological sheet” in our three-
dimensional parameter space spanned by Uf0 , (xu−xb)f0 , and f0 (see fig. 3). More
generally, one will speak of a hypersurface in some d-dimensional reduced parameter
space (d not necessarily equal to 3). Each point in this space represents a cell with
the corresponding parameter values. Cells lying on the surface have parameter
values “adapted to their prestress” in the above sense, i.e., they are functional and
selected by evolution. A cut of the sheet along the U -axes gives a curve according
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Figure 3: Physiological sheet in parameter space

to eq. (7), a cut along the (xu−xb)-axes gives the prestress dependence for fixed U .
Cells with rest parameters off the surface or cells that are less efficient in reaching
the physiological sheet after a perturbation, are, within our simplified discussion,
not well adapted to perform their biological function. These cells will have a higher
probability to be evolutionary suppressed and should therefore less likely be found in
living organisms. We thus expect results from experiments done under physiological
conditions to cluster on the physiological sheet unless driven away from it by a
sudden violent external stimulus.

As the parameters of our hypothetical potential are assumed to determine the
macroscopic properties of the network, the existence of the physiological sheet will
also lead to a dependence of the prestress on, e.g., the stiffness of the cell. To
see this, consider the balancing condition eq. (6). From the above discussion we
cannot expect this condition to be an exact equality: In the case of fixed prescribed
xu − xb eq. (7) holds, and the prestress has to grow approximately linear with
U . The prefactor of this linear dependence, however, is not determined by our
argument and in general the prestress dependence of Uf0 and (xu − xb)f0f0 need
not cancel exactly. The consequence is that we have a relation between the steady-
state occupation density (which should be positively correlated to the stiffness)
and the prestress. The question whether increasing fraction of closed bonds ν∗
correlates with increasing or decreasing prestress is readily decided by applying the
definition of the physiological sheet: as the stability condition prohibits trapping
in the completely disintegrated or unbound state, the bound state has to survive
the lowering of the barrier by the prestress. Translated into the languague of our
parameters, this minimum stability requirement means that (xu−xb)f0 has to grow
at least a little bit weaker than U . It can easily be checked in eq. (5) that this leads
to an increase of ν∗ with increasing prestress and vice versa. In other words, a
stiffening of the cell correlates with increasing prestress.



To obtain the physiological sheet depicted in fig. 3, we used the particular force
dependence introduced in eqs. (3) and (4). The argument of mechanical stability can
of course be reiterated for other force dependencies, the shape of the physiological
sheet will then be affected, however. To illustrate this effect, it may be useful to
consider a more complicated form of the on and off rates. For example, one could
imagine a case were the Kramers escape rate is amplified by a linearly position-
dependent factor. Then, one might obtain for the steady-state occupation density

ν∗ =
1

1 +
(

1− xu−xb
xu

)
exp [−[U + f(xu − xb)]/kT ]

. (8)

Obviously, this expression does now depend on the absolute values of xb and xu and
not any more merely on their difference. The physiological sheet is now a three-
dimensional hypersurface in a four-dimensional parameter space. The projection
of this hypersurface on the U -(xu − xb)-f0 space for fixed f0 is, apart from weak
logarithmic corrections, identical to the physiological sheet for the simple force
dependence. For even more complicated force dependencies, the relevant parameter
space will be of even higher dimension. Also, the projection on the U -(xu − xb)-f0
space might generally differ more substantially.

6 Discussion
We have introduced a simple model potential to mimic generic aspects of the molec-
ular interactions between filaments of the cytoskeleton, mainly with its most im-
portant stress bearing component, the actin cortex, in mind. After a brief review of
the GWLC model that accounts for the viscoelastic dynamics of in vitro cytoskele-
tal model systems and even living cells with impressive precision, we proposed to
extend this model in order to account also for inelastic and plastic processes. Our
extension was based on the same schematic interaction potential that motivated
the GWLC. We discussed the force dependence of the binding and unbinding rates
of the bonds between a test polymer and a surrounding biopolymer network. We
used a simple but plausible model for the force dependence of the transition rates.
However, even for arbitrarily complicated force dependencies, the general picture
should remain valid. Our discussion of forces and interactions, which were already
hinted at in less detail in previous work ([25, 8]), suggested a mechanical stability
condition of fully functional cells at rest. In brief, this condition states that in order
to perform its tasks a cell should neither tear itself apart in a destructive way nor
behave entirely rigid. We reiterate that our study needs to be completed by blend-
ing in the information that the bonds are formed between biopolymers or other
fibrous substructures of the cytoskeleton, which could be accomplished by coupling
it to the GWLC or even a more complete network model. This would provide a
translation of our force parameter f0 to the backbone tension in the filaments and
eventually to the prestress, measured by external devices or inferred by cutting the
cytoskeleton and monitoring the retraction [26].



Our discussion assigned a prominent role to the prestress, which is actively
generated by the cell and which is assumed to co-evolve with the cytoskeleton during
cell development and/or remodelling such as to balance the cell mechanically in (or
close to) the physiological sheet at all times. According to our model, the prestress
is firmly tied to the mechanical strength of the cell in agreement with experimental
observations of a linear correlation of prestress and cell stiffness [27]. A possibly
related observation is that the stiffness of the substrate on which the cells are
cultured has a strong influence on the amount of internally generated stress [28].
There have been many speculations about the underlying mechanisms [29, 30]. In
particular, it has been attributed to the physical conditions in the focal adhesions
[31, 13], and it has been asked what might be the microscopic variable actually
measured by the cell [32, 33, 34]. Two at the first glance very intuitive candidates
for the measured variables are either external deformation [33] or force [34]. With
regard to the strongly fluctuating cell strengths, sizes, and geometries, however,
it is not clear at all how the cell should be able to measure absolute stresses or
strains. The absolute values of these parameters may vary dramatically between
cell types [35], throughout a single cell type [2], and even for a single cell that
may considerably remodel its cytoskeleton in response to changing external stress
or substrate stiffness [36].

From the perspective of the physiological sheet, an alternative interpretation
emerges. Could the observed correlation between substrate stiffness, cell strength
and prestress be the consequence of a very general and evolutionary strongly con-
served optimization involving the physiological sheet? This would go along with a
tendency of cells to share the task of shock absorption with the environment. To
illustrate this idea and its relation to the concept of the physiological sheet, con-
sider a soft cell (at low prestress, according to the physiological sheet), brought in
contact with a stiff substrate. Due to the corresponding “fixed distance” boundary
conditions imposed by adhesions on the stiff substrate, thermal or actively generated
noise inside the cell as well as external strains translate into large force fluctuations.
These have to be absorbed completely inside the cell, increasing the probability of
harmful rupture events and loss of integrity. Note that such force fluctuations cor-
respond to transient excursions from the physiological sheet. To counteract these
excursions, the natural response of the cell might therefore well be to try and tame
these force fluctuations by evolving its state on the physiological sheet away from
the fixed-distance ensemble and towards a fixed-force ensemble with a higher pre-
stress and stiffness, but lower relative force fluctuations. Thereby the cell would be
able to trade potentially harmful stress spikes for hydrodynamically overdamped
viscoelastic motion and inelastic deformations in the form of reversible bond break-
ing in a cytoskeletal network maintained at the edge of mobility. Internally, such a
state change would involve a reinforcement of the cytoskeleton over timescales much
slower than the force fluctuations. Externally it would manifest itself by a tendency
towards mechanical impedance matching with the environment, increased prestress,
and strong inelastic structural damping — all in agreement with the observations.
Intriguingly, recent findings that stem cell fate is to a large extent governed by sub-



strate stiffness [37, 38] suggest that the general tendency of mechanical adaptation
is a crucial facet of a much broader assimilation program.

Interestingly, recent studies of suspended cells that are prevented from adhering
to a substrate have revealed an intriguing manifestation of what we think can be
interpreted as the cell’s active search for mechanical stability [39]. The detected
highly reproducible spontaneous shape oscillations with periods on the order of
a minute hint at a characteristic internal time scale of the internal machinery at
work. These observations suggest that the overall regulation mechanism, by which a
cell establishes the mechanical stability conditions summarized in the physiological
sheet, may fail to reach a stable state once the cell is not able to attach to a substrate
— i.e. in the absence of an external force to balance the internal prestress that is
always generated to keep the cell at the edge of mobility.

7 Conclusions
In this contribution, we have tried to step back from a thorough and detailed descrip-
tion of the cell and have emphasized instead the broader context of its mechanical
stability. Our line of arguments was centered around the fundamental observation
that the cell is a plastic (rather than viscoelastic) body. Based on an intuitive
qualitative minimal model of the fundamental inelastic mechanism at work in the
cytoskeleton, we posed the question how the cell should tune important mechanical
quantities in order to stay mechanically functional, which led to the concept of a
“physiological sheet” in parameter space.

In particular, we concluded that the cell should exhibit a tendency of adapting
its internal mechanical strength to that of the substrate. From our functional point
of view, we claimed that the cell does neither want to achieve a particular stress
nor a particular strain. The cell might rather aim at optimizing its internal shock
absorption, where “internal” comprises the connections to any substrate. Based on
the concept of the functional sheet, we pointed out a mechanism how the cell could
become more resilient to potentially harmful force spikes of various origin, while
maintaining its state at the edge of mobility, i.e., on the physiological sheet. To
achieve this while adhering to a stiff substrate, the cell would naturally have to
evolve its state on the physiological sheet by both reinforcing its cytoskeleton and
increasing its prestress. It is an intriguing question, whether this scheme can be
verified on a microscopic level in the living cell.
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