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Abstract 
The pulsed gradient spin-echo nuclear magnetic resonance experiment is a powerful tool 
for studying the constitution and structure of complex systems (e.g., polydisperse systems 
and porous media). In applications to polydisperse systems, it is important to consider the 
effects of obstruction, exchange, entanglement, and diffusional averaging processes 
whereas in applications to porous samples, reliable structural information can only be 
extracted from the time-dependence of the apparent diffusion coefficient when the 
deleterious effects of spatially and/or temporally inhomogeneous background (magnetic 
field) gradients can be suppressed. These issues are considered in this review. 
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1. Introduction 
Nuclear Magnetic Resonance (NMR) is the most powerful non-invasive technique for 
probing self-diffusion. Combining this with the ease of sample preparation and the range 
of systems that may be investigated makes for a very attractive technique. Self-diffusion 
refers to diffusion occurring in a system at equilibrium, thus the diffusion coefficient of 
pure H2O is a measurement of self-diffusion as is the diffusion coefficient of ethanol in a 
homogenous water-ethanol solution. Contrast this with mutual-diffusion which takes 
place in a system approaching equilibrium via a chemical potential gradient. NMR is 
ideal for measuring self-diffusion coefficients [1-3]. Other methods for measuring 
diffusion such as using radio tracers are better suited for measuring mutual diffusion. The 
range of diffusion coefficients that may be probed by NMR span over seven orders of 
magnitude, ranging between 10-7 m2s-1 to 10-14 m2s-1 (and comfortably beyond in 
favourable samples). 

Starting with the basic theory of NMR based diffusion measurements this chapter 
then proceeds to demonstrate the wide range of systems in which diffusion may be 
investigated using this powerful and versatile technique. After introducing the pulsed 
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gradient spin-echo (PGSE) technique for measuring diffusion (a standard two pulse 
sequence) some applications of this sequence (and simple variants thereof) to 
investigating complex systems are examined. These include discussion of some 
diffusional averaging processes that occur in polydisperse macromolecular solutions and 
changes in the apparent diffusion coefficient due to geometrical confinement. In these 
more complex applications of the PGSE sequence the deleterious effects of unwanted 
background gradients become apparent. Thus the chapter concludes with a discussion on 
more complex variants of the basic PGSE sequence which enable the reduction of 
background gradient effects. 

2. Pulsed Gradient Spin-Echo (PGSE) NMR 
The PGSE NMR sequence for measuring translational diffusion will be described in 
moderate detail. More detail can be found in Refs. [2, 4-7]. An understanding of the 
simple Hahn-echo based PGSE sequence provides a good basis for understanding the 
capabilities of NMR diffusion in general. The most appropriate sequence to use depends 
upon the nature of the system under study. 
 It is assumed that not all readers are familiar with NMR so the basics needed for 
understanding the PGSE sequence will be covered now. Many nuclei (such as 1H, 2H and 
13C) have a magnetic moment and in effect behave like little bar magnets (ignoring some 
of the more subtle points in quantum mechanics). The strength of the nuclear magnetism 
decreases as the mass of the nucleus increases thus the most NMR sensitive nucleus is the 
proton (1H). A sample is of macroscopic dimension and is composed of a number of 
nuclei on the order of Avogadro’s number. Normally the magnetic moments of the nuclei 
are distributed randomly and there is no net macroscopic magnetisation. If the sample is 
placed in a strong magnetic field the magnetic moments of the nuclei will have a slight 
preference to align along the field in the same manner that a compass needle has a 
preference to align north (the preference is slight as the molecules are all in thermal 
motion). The result is a macroscopic magnetisation (arising from the nuclei) aligned 
along the field. This is illustrated in Fig. 1A. An NMR spectrometer has a large magnetic 
field (11.74 T say) in which the sample is placed. The spectrometer can manipulate this 
macroscopic magnetisation by means of radiofrequency (RF) pulses and magnetic 
gradient pulses.  

RF pulses can be used to manipulate the macroscopic magnetisation by rotating it. 
Nuclear species have different magnetic moments, and different frequency RF pulses will 
rotate different components of the macroscopic magnetisation (belonging to different 
nuclei). Only one nuclear species is needed to measure diffusion (1H is chosen here). The 
RF pulses used to manipulate the magnetisation last on the order of a few microseconds. 
One of the most common manipulations is to flip the magnetisation onto the horizontal 
plane so that it is 90° to the magnetic field (see Fig. 1B).  



 

 

 
Fig. 1: The magnetic field is aligned vertically. (A) The equilibrium magnetisation points along the 
field. (B) An RF pulse can be used to rotate the magnetisation from the vertical to the horizontal as 
illustrated here. The RF pulse only lasts on the order of a few microseconds. The magnetisation, 
once perturbed in this manner, will begin to relax back to equilibrium. (C) The evolution of the 
magnetisation after a 90° RF pulse for some “typical” parameters. Note that the relaxation process 
typically takes over two orders of magnitude longer to return to equilibrium than the RF pulse took 
to perturb the magnetisation to the transverse state. 
 

Once the magnetisation is perturbed from the vertical it will begin to relax back to 
equilibrium. Two processes take place during its evolution: it will precess about the main 
magnetic field with a frequency known as the Larmor frequency (~500 MHz for a proton 
in an 11.74 T magnetic field); it will also realign with the main magnetic field returning 
to equilibrium (a process quantified by two parameters describing the longitudinal and 
transverse relaxation). Note that the Larmor frequency is proportional to the magnetic 
field strength and is described quantitatively as  

 

 ( )0Bω γ= − + ⋅g r ,  (1) 
 

where γ is the gyromagnetic ratio, a constant for each nucleus (for protons γ = 
267.522×106 rad s-1 T-1) [8], B0 is the magnitude of the static magnetic field, g is the 
gradient and r is position. 
 The evolution of the magnetisation by showing the trajectory of the tip of the arrow 
during a “typical” relaxation process is illustrated in Fig. 1C. The NMR spectrometer can 
acquire a signal by opening its receiver channel. The precessing magnetisation induces a 
current in the receiver via Faraday induction. This signal is called the free induction 
decay (FID) and is proportional to the transverse component of the magnetisation and has 
the appearance of a sine wave enveloped by a decaying exponential. There is much 
information that can be stored in the FID (the FID is usually Fourier transformed to yield 
a spectrum for analysis) but for measuring self-diffusion its magnitude at the initial point 
of acquisition is all that is needed. 
 A measurement of diffusion requires that the molecules be labelled in some way so 
their motion can be traced. In NMR a spatially dependent magnetisation is created within 
the sample and from observations of its evolution over time the diffusion coefficient of 
the molecules of interest can be inferred. Gradient pulses are used to create the spatially 
dependent magnetisation. To see how the gradient pulses work recall that the Larmor 
frequency is proportional to the magnetic field strength. A constant gradient will result in 



 

 

a linear variation in the magnetic field. Consider the gradient to be aligned along the z-
direction (other directions can be useful, for example, in situations where the diffusion is 
anisotropic). The NMR sequence used to illustrate diffusion measurement in this section 
is the PGSE sequence which is shown in Fig. 2A. Often it is assumed that the only 
magnetic gradient that must be considered is the purposely applied one (i.e. g = ga). 
However, sometimes the presence of a background gradient g0 must also be accounted for 
(see Section 5). 
 

 
Fig. 2: The Hahn spin-echo PGSE sequence (A) and the stimulated echo-based PGSE sequence 
(STE-based PGSE) (B). For the Hahn spin-echo PGSE sequence, two pulsed gradients of duration 
δ and magnitude ga are inserted into each τ delay; for the STE-based PGSE sequence, two pulsed 
gradients of duration δ and magnitude ga are applied in the two encoding intervals, (0 to τ1) and (τ1 
+ τ2 to 2τ1 + τ2), which are separated by the phase storage period (τ2). It is assumed that the 
background gradient is constant during the pulse sequences and has a magnitude of g0. The 
separation between the leading edges of the pulsed gradients is denoted by Δ (i.e., observation time 
or diffusion time). The applied gradient is along the z-axis (the direction of B0). The Hahn spin-
echo-based PGSE sequence can be divided into 6 intervals according to the variation of the net 
magnetic gradients. Only the second half of the echo is digitised and used as the free induction 
decay (FID). The coherence pathways are also shown here. The STE-based PGSE sequence only 
captures half the magnetisation that the Hahn spin-echo PGSE sequence does. 
 



 

 

 Immediately after the 90° RF pulse the magnetisation is flipped to the xy-plane as 
indicated in Fig. 1B. Looking at how it varies along the z-axis after the first RF pulse the 
magnetisation appears as illustrated in Fig. 3A (note that there is still no spatial 
dependence and the magnetisation is considered to be only a function of z). Following the 
RF pulse is a short period of precession during which the magnetisation still appears 
much as in Fig. 3A. Following this the magnetisation is wound up into a helix during the 
finite length of the gradient pulse (i.e. it picks up a spatially dependent phase during the 
gradient pulse until it appears as illustrated in Fig. 3B). This occurs because there is a 
linear variation in the magnetic field and thus a linear variation in the Larmor frequency 
with respect to position along the z-axis. 
 There is a period of free precession until the application of the next gradient pulse 
after a delay Δ (the time between the leading edges of the gradient pulses). A 180° pulse 
is applied to change the handedness of the magnetisation helix (see Fig. 3C) so that the 
second gradient pulse unwinds the helix as opposed to winding it up further. It might be 
asked why the 180° pulse is not left out of the sequence and the second gradient pulse 
replaced with a negative gradient so as to simplify the sequence. Indeed this will work in 
some cases but is far from ideal since the 180° RF pulse also cancels out some other 
effects (chemical shift evolution) and thus makes for a better sequence – indeed it 
refocuses magnetisation with varying Larmor frequency at the point of acquisition. 

 
Fig. 3: (A) The magnetisation after the 90° RF pulse. The magnetisation will also appear like this 
after the short period a precession (although it will have relaxed a little and may have a small 
longitudinal component). (B) A spatial variation in magnetisation is created by application of a 
gradient pulse. This is how the magnetisation appears after application of the gradient pulse. (C) 
The 180° pulse inverts the handedness of the magnetisation helix (compare to Fig. 3B). (D) More 
finely pitched helices (compare with Fig. 3B) attenuate more quickly as a result of diffusion 
because the molecules carrying the magnetisation do not have to move as far relative to each other 
to start to significantly cancel each other’s magnetisation. 



 

 

 The magnetisation is carried by the molecules composing the sample. These 
molecules are in constant thermal motion. This self-diffusion serves to attenuate the 
magnetisation helix as molecules that start out initially close to each other with nuclei 
with similar magnetic moment orientations move away from each other into regions 
where the magnetic moment orientations differ. The second gradient pulse unwinds the 
magnetisation such that a signal can acquired. The magnetisation helix not only 
attenuates as a result of diffusion but also as a result of the other relaxation processes 
alluded to earlier (recall that when perturbed from equilibrium the magnetisation 
undergoes a trajectory similar to that given in Fig. 1C in returning to equilibrium). Thus it 
is not enough to measure the magnitude of the FID at acquisition to obtain the diffusion 
coefficient since this magnitude has also been affected by other attenuating processes. A 
number of measurements must be made (the minimum is two but more is better) using a 
variety of differently pitched magnetisation helices (see Fig. 3B and Fig. 3D). Diffusion 
will affect the attenuation of these helices differently. In a finely pitched helix for 
example, the molecules will not have to move very far for them to have migrated into a 
region with a very different magnetisation phase and thus diffusion will cause more rapid 
helix attenuation in this case. In coarsely pitched helices the molecules have to move 
quite far from their starting positions before they begin to significantly cancel each 
other’s magnetisation and thus these helices attenuate slowly as a result of diffusion. The 
other attenuation processes (those caused by relaxation) do not depend upon position and 
affect all helices equally. Differently pitched magnetisation helices can be created by 
repeating the experiment and incrementing the gradient strength g while leaving the other 
parameters unaltered. 
 One way of quantifying the helix pitch is via the parameter q which quantifies the 
number of revolutions in the magnetisation helix per unit distance and is given by  
q = γgδ/2π (m-1) where δ is the duration of the gradient pulse. Typical values of g (e.g., 
between 0.027 T m-1 and 0.43 T m-1 for a high resolution gradient NMR probe) and δ (1 
ms) used during the measurement of the diffusion coefficient of water result in q values 
between 1150 m-1 and 18300 m-1 – that is the helices have between approx. 11 and 180 
revolutions per centimetre. The diffusion coefficient of residual HDO in D2O is  
D = 1.902×10-9 m2s-1 [9]. The diffusion coefficient is related to the mean square 
displacement of a molecule by [10] 
 

 ( ) ( ) ( ) ( )2 2' ' | ', 'P d dρ
∞ ∞

−∞ −∞
− = − Δ∫ ∫r r r r r r r r r  (2) 

 

where ( )ρ r  is the spin density and ( )| ',P Δr r  is the probability of a molecule moving 
from r to r′ during Δ. In a free homogenous isotropic solution Eq. (2) gives  
 

 ( )
1 22' 6Dt− =r r  (3) 

 

where <(r – r′)2>½ is the root mean square (RMS) displacement and t is time. On a time 
scale of 100 ms a RMS displacement for a water molecule of 33.8 μm is expected. For 
q = 11.5 cm-1 this is only 1/25th of a revolution of its magnetisation and so only minimal 
diffusive attenuation should occur during 100 ms. For the q value of 183 cm-1 the RMS 



 

 

displacement of a water molecule corresponds to about 1.6 cycles of the magnetisation 
helix and thus a significant attenuation of this magnetisation helix as a result of diffusion 
is expected. 
 The Stejskal-Tanner equation exactly quantifies the diffusive attenuation resulting 
from application of the PGSE sequence. The signal strength depends upon γ, δ, g, Δ 
(most of the diffusive attenuation takes place during this period), and finally D. Many of 
these parameters appear in Fig. 2A. The Stejskal-Tanner equation is  
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where t = acq is the acquisition time, with b the term including all of the delays, gradient 
strength and gyromagnetic ratio for the pulse sequence used. 0

t acq t acq
gS S= =

=  is the 
normalised signal at the time of acquisition (the signal strength with the gradient divided 
by the signal strength without the gradient). This normalisation allows for the removal of 
relaxation attenuation. 
 All the parameters on the right hand side of Eq. (4) are known except D. By 
incrementing the gradient g and measuring the signal strength, Eq. (4) can be fitted to the 
data to determine D. Putting the q values of 11.5 cm-1 and 183 cm-1 into Eq. (4) and using 
D = 1.902×10-9 m2s-1 (residual HDO in D2O), the normalised signal 0

t acq t acq
gS S= =

=  is 
found to be 0.99 (that is 99% as strong as it would have been without a gradient) and 0.08 
(that is only 8% as strong as it would have been without a gradient) respectively. Eq. (4) 
thus predicts the behaviour that is expected (based on the calculations using Eq. (3) given 
earlier). Eq. (4) has not been derived here but a brief discussion of how it can be derived 
will now be given (see also Eq. (23)). 
 The discussion about the workings of the PGSE sequence has been qualitative in the 
lead-up to Eq. (4). Mathematically the macroscopic magnetisation obeys the Bloch 
equation [11]  
 

 
( ) ( ) ( )0
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γ
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= × − −
i jM k

M B , (5) 

 

where B(t) is the magnetic field vector, Mx and My are the components of the 
magnetisation in the x and y directions, respectively, M0 is the magnitude of the 
equilibrium magnetisation (aligned along the z-axis) and i, j and k are unit vectors 
pointing along the x, y and z axes, respectively. These equations depend only upon the 
magnetisation at a point and not at all on neighbouring points. Ignoring the evolution 
given by Eq. (5) the magnetisation should be expected to evolve in time via diffusion. 
This is described by the standard diffusion equation  
 



 

 

 2D
t

∂
= ∇

∂

M
M . (6) 

 

Combining the two forms of time evolution quantified by Eqs. (5) and (6) results in the 
Torrey-Bloch equation [12]  
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By tracing the magnetisation through the PGSE sequence given in Fig. 2A using the 
Torrey-Bloch equation (Eq. (7)) Eq. (4) can be derived explicitly [5, 13]. 

3. Diffusion in Freely Diffusing Macromolecular Systems 
The signal attenuation from an NMR diffusion experiment for a freely diffusing species 
is in the form of an exponential decay and when there is only one diffusion coefficient 
present (i.e. a monodisperse sample) this decay is monoexponential (i.e. one exponential 
decay constant). While natural polymers (e.g. proteins) are usually monodisperse [14, 
15], synthetic polymers may be very polydisperse (i.e. there is a molecular weight 
distribution) and this makes the diffusion in these systems difficult to model. Diffusion in 
polydisperse macromolecular solutions is affected by phenomena such as obstruction and 
entanglement and these effects are averaged for the diffusion time as they generally occur 
on a smaller timescale than the measurement [2, 16]. Obstruction by the larger molecules 
in a polydisperse system results in a reduction in the diffusion coefficient of the smaller 
molecules (self-obstruction also occurs and results in a reduced diffusion coefficient) and 
different mathematical models are available [15, 17]. These models are, however, 
oversimplifications because of the assumptions they make [16, 18]. Consider the results 
of using two such models in a protein aggregation study by Price et al. [15]. Further 
complication arises if it is a polydisperse system of aggregate species since the 
aggregations may have different lifetimes [16]. 
 Non-linearity in the logarithmic attenuation plots should be noticeable even for very 
low polydispersities [19, 20], but this is often not seen and the resulting plots are often 
linear or the non-linearity is reduced (even for higher polydispersities) [15, 21]. Even for 
simple bimodal mixtures of polymers, although the logarithmic attenuation plots are non-
linear, they are closer to linear than predicted [19]. Hence, two other diffusional 
averaging processes – macroscopic and microscopic (ensemble) averaging – are often 
discussed in the literature. The former is the ability to describe the attenuation by the 
component diffusion coefficients and their population fraction in the polydisperse system 
[19]. The latter is used to describe the deviation from the macroscopic average [16, 19, 
21] and is seen as a narrowing of the distribution of the diffusion coefficients [16, 19, 
22]. 

Understanding polymer solutions 
When studying polymer solutions (and before dealing with the problems associated with 
polydispersity) it is important to understand that the diffusive behaviour may be 



 

 

dependent on the concentration range (e.g. dilute – semi-dilute – concentrated), in 
particular the overlap concentration(s) (where the polymers start to interact and then 
eventually entangle) may need to be considered (for example see Refs. [23-31]). It is also 
common to come across theories like that of reptation [29, 30, 32-34] (the forced 
curvilinear (snake-like) motion of a linear polymer due to entanglement making a fixed 
tube for motion), constrained release [29, 30, 32-34] (the tube created by the 
entanglement only dampens the lateral movement of the linear polymer because the 
entanglement is fluid (a tube renewal process)) and arm retraction [35, 36] (branched 
polymers cannot undergo reptation in one direction (arm retraction then core hopping)).  
 To assist with modelling diffusion in polymer systems empirical scaling laws are 
often available or observed. Such scaling laws show how a property such as diffusion 
depends on the concentration, molecular weight or both (for examples see Refs. [21, 26, 
31, 37-42]). It is common to find the relation between molecular weight and diffusion as 
[20, 22, 38, 42, 43], 
 

 D kM β−=  (8) 
 

where M is the molecular weight and k and β are constants that depend on the type of 
polymer and solvent parameters. However, such scaling laws are only a guide and may 
only be applicable to certain molecular weight ranges since the scaling laws may not take 
into account shape changes as the molecular weight increases (rods to random coils, for 
example) [44]. 

Diffusion and the effect of a molecular weight distribution 
The polydispersity index (PDI) provides a means of characterising polydispersity [14], 
 

 PDI= w

n

M
M

 (9) 

 

where nM is the number-average molecular weight, wM is the weight-average molecular 
weight. Some consider a PDI < 1.1 to be the critical value for defining monodisperse 
polymers [14], while those with a PDI ≤ 1.25 are narrow polydispersity polymers [45]. 
Fractionated polymers fall in the range of 1.30 ≤ PDI ≤ 1.75 and polymers with a PDI 
between 1.8 and 2.4 are poorly fractionated [45]. Wide distribution polymers have a PDI 
≥ 2.5 [45] with some commercial polymers having a PDI of up to 30 [14]. 
 The molecular weight of a polydisperse polymer can be expressed in a number of 
ways [14, 19-21, 43, 46, 47], and the average molecular weight value measured for a 
polydisperse polymer depends on the technique used to measure it [14]. The full 
molecular weight distribution can be measured with techniques such as gel permeation 
chromatography [47, 48]. Diffusion measurements give a diffusion-average molecular 
weight, MD [20, 43, 46], the value of which depends on the technique used to measure it 
and the concentration of the solution for which the diffusion was measured. In order to 
see how the diffusion-average molecular weight comes about (for a discrete polydisperse 
system or a system of different size ‘permanent’ aggregates where the NMR signals are 
the same or overlapped) we must consider the signal and its attenuation. The NMR signal 



 

 

(and its attenuation) is now a sum of the contributing signals and so [15, 16, 19-21, 37, 
49], 
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where i represents the number of components in the system. Rewriting Eq. (10) to show 
the net equilibrium magnetisation (M0, i), the relaxation term (exp(Ri)) and the diffusion 
term (exp(-bDi)) we get 
 

   
, exp( )exp( )t acq

g 0 i i i
i
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but since the net equilibrium magnetisation relates to the number (or amount, i.e. moles), 
n, and the molecular weight of component i then 
 

   exp( ) exp( ).t acq
g i i i i
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 The next step is to consider if the relaxation term can be neglected for the particular 
system or molecular weights present. It is often deemed independent of molecular weight 
[15, 16, 19-21], although it should be considered for any study since variations of the 
relaxation times with molecular weight may give ‘diffusion time’ dependent attenuation 
[20]. However neglecting relaxation and normalising the attenuation data to the signal 
when g = 0 T m-1, Eq. (12) becomes 
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and this leads to the weighted average diffusion coefficient [15, 16, 21], 
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 Using Eq. (8) and Eq. (14) the weighted average diffusion coefficient can be 
expressed in terms of the diffusion-average molecular weight [20, 43, 46], 
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where kD and βD represent the coefficients of the scaling law for the weighted average 
diffusion coefficient. So from Eq. (14), Eq. (15) and again Eq. (8), 
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 But with the assumption that the coefficients (i.e. k and β) of the scaling laws are the 
same for each molecular weight species present (i.e. same type of polymer or chemical 
species in each aggregate) Eq. (16) becomes 
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 To extend Eq. (13) to a continuous polydisperse system the summations are simply 
replaced with integrals [19, 20] and so the full attenuation due to diffusion (i.e. including 
relaxation) is given by, 
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 The above equations (i.e. Eq. (10) – Eq. (18)) describe the result if only macroscopic 
averaging occurred but obstruction may also need to be considered [15, 18, 50]. However 
as discussed microscopic averaging is also observed and so the resulting attenuation 
measured for a polydisperse system (in size) deviates from that described by the above 
equations. Further difficulties arise when trying to separate summed exponential decays. 
A simple biexponential fit to the attenuation data for a bimodal system (i.e. only two 
different diffusion coefficients present) may be affected by the available signal-to-noise 
ratio (S/N), deviations due to instrumental error, the population fraction and amount (i.e. 
moles) of each of the contributing species (i.e. the amount of signal from each) and the 
ratio of the diffusion coefficients [51]. An exponential decay may appear 
multiexponential even if it is not [51]. The problems faced when accurately separating 
exponentials are also faced when attempting to present the data in the form of a diffusion 
ordered spectroscopy (DOSY) plot [7, 52-54]. 

4. Diffusion in Restricted Systems 

The time-dependent diffusion coefficient 
PGSE works by spatially labelling the position of nuclear spins via magnetic field 
gradients and then recording the loss of phase coherence of the transverse magnetisation 
via spin-echoes. When this spatial label is recorded at two instants in time, the phase 
change becomes a function of the mean square displacement (MSD) given by Eq. (2). Eq. 
(2) presents the relationship between the molecular displacement due to diffusion and the 
diffusion equation. Importantly the MSD determined using PGSE NMR is averaged over 
the entire sample which need not be a disadvantage especially when working on 
geological samples since it is the “average” properties that are most likely of interest. For 
free diffusion, the length of time (i.e., Δ) we choose is irrelevant in the absence of 
exchange and experimental complications and assuming sufficient signal exists, because 
the MSD scales linearly with time. In restricted systems however, the confining 



 

 

boundaries can impart a signature on the MSD hence the MSD becomes a function of Δ, 
the true self-diffusion coefficient D0, and the size and shape of the confining geometry.  
 At short diffusion times Δ << a2/ D0, where a is the characteristic pore size, the 
confining geometry has little effect of the diffusing molecules therefore the MSD 
approaches that of free diffusion, i.e., Eq. (3). As Δ becomes finite (Δ ≈ a2/ D0), a certain 
fraction of the particles will feel the effect of the boundary and the MSD will not scale 
linearly with Δ. The apparent diffusion coefficient Dapp determined from PGSE 
experiments will therefore contain information on the size and shape of the confining 
geometry.  A relationship for the apparent diffusion coefficient can be obtained by 
substituting Eq. (4) for E(q, Δ) 
 

 ( ) ( )
20

ln ,1 limapp q

E q
D
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∂ Δ⎡ ⎤⎣ ⎦Δ = −
Δ ∂
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 It can be shown that by performing a Taylor expansion the initial decay of E(q, Δ) 
with respect to q gives the MSD. Dapp can then be written as 
 

 ( ) ( )2' 2appD Δ = − Δr r  (20) 
 

from the low q limit of E(q, Δ). From Eq. (20), we can obtain a time dependant diffusion 
coefficient incorporating the surface to volume ratio (S/V) of the pore [55] 
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 The S/V ratio is a key parameter in systems where the surface of a pore drives the 
chemistry (e.g., biology, catalysis, and colloidal sciences) [55]. At long diffusion times 
(Δ >> a2/ D0) in a totally confined pore, the maximum distance the molecules can diffuse 
is limited by the confining geometry thus the MSD becomes independent of Δ. In this 
regime, Dapp(Δ) is a rich source of structural information on the confining geometry. For 
instance if the apparent diffusion coefficient approaches zero at long time intervals 
(Dapp(Δ → ∞) → 0), it indicates the molecules are confined within the pore [55]. 
However in well connected pores, the time dependant diffusion coefficient approaches a 
finite non-zero value, Dapp(Δ → ∞) → D0/α, where α is a geometrical factor known as 
tortuosity. 
 Analytical and numerical expressions to describe the PGSE NMR signal attenuation 
exist for molecules diffusing within simple geometries (e.g., parallel planes, sphere, and 
cylinder) [56-60] allowing characteristic distances in simple monodisperse systems to be 
determined directly from the q-space plots. Most natural systems however contain porous 
geometries which are complex with multiple length scales and are randomly connected. 
Deriving analytical expressions for such systems quickly becomes mathematically 
intractable hence it becomes virtually impossible to identify exact shapes. To account for 
these complexities, the signal attenuation expressions have been modified in some 



 

 

instances to include terms which account for a distribution of characteristic distances [61, 
62], however, these expressions have failed to completely describe E(q, Δ).  
 Background or internal gradients which are present within the pores can also be a 
significant source of uncertainty (see Section 5) or information on the confining geometry 
(e.g., the presence of background gradients can be used to determine the multiple length 
scales in porous rocks without the need to apply external gradients [63, 64]).  

5. Suppression of Background Gradients in PGSE NMR Experiments 
In NMR, the applied static magnetic field B0 (T) can never be 100% homogeneous due to 
two main factors: differences in magnetic susceptibility inside and/or around the NMR 
sample and imperfect shimming of the magnet. For inhomogeneous samples (e.g., sand-
stone saturated with water) the background gradients mainly result from susceptibility 
inhomogeneity while for homogeneous samples (e.g., water) the background gradients 
are primarily caused by imperfect shimming. The background gradients (also referred to 
as internal gradients, static gradients, and magnetic inhomogeneity) caused by 
susceptibility inhomogeneity may be extraordinarily strong. For example, it is estimated 
that red blood cells have gradients up to 2 × 10-2 T m-1 due to the large difference in the 
magnetic susceptibility between the inside and outside of the cells [65, 66]; in metal 
hydride samples, such background gradients can be of the order of 0.5 T m-1 [67]; in the 
sand-stone saturated with water, the background gradients may be as high as 10 T m-1, 
which is ~20 times higher than the pulsed gradient strength available on a high resolution 
NMR probe used in PGSE diffusion experiments. The generation of susceptibility-
induced background gradients can be elaborated by the following discussion. 
 In a medium, the magnetic flux density B (T), which is normally referred to as the 
magnetic field in NMR experiments, established by an applied magnetic field H (A m-1) 
can be calculated by [68, 69] 
 

  B = μ0 (1 + χ) H, (22) 
 

where μ0 is the magnetic permeability of free space (4π × 10-7 H m-1) and χ 
(dimensionless) is the magnetic susceptibility which expresses how readily the medium 
develops a magnetic moment on exposure to an external magnetic field. χ is zero for 
vacuum and for materials it may take positive (for paramagnetic materials) or negative 
(for diamagnetic materials) values. A paramagnetic sample tries to pull the magnetic field 
into the material and thus causes a stronger magnetic field than the applied magnetic field 
while a diamagnetic sample tries to push the magnetic field out of the material and thus 
leads to a weaker magnetic field. From Eq. (22), it can be realised that spatial differences 
in the magnetic susceptibility results in background gradients [70].  

Effects of background gradients  
The diffusion induced spin-echo attenuation can be calculated via the Stejskal-Tanner 
equation (neglecting relaxation processes) [5],  
 



 

 

  
  

2

0
  0

ln ( ") "
t acq t

t

S
D F t dt

S

=

=
= −

⎡ ⎤
⎢ ⎥⎣ ⎦

∫ , (23) 

 

where F (rad m-1) is the spin dephasing given by 
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S t=acq is the echo signal, S t=0 is the signal immediately after the first π/2 pulse (i.e. initial 
excitation in the PGSE sequence), t (s) is the time at which the signal acquisition begins, g 
(T m-1) is the net gradient (the sum of all magnetic gradients existing in the system), and p 
is the selected coherence level.  
 Eq. (23) is evaluated over each period of a pulse sequence. For the Hahn spin-echo 
PGSE sequence shown in Fig. 2A, the spin-echo attenuation in the presence of 
background gradients is derived as 
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 Similarly for the STE-based PGSE sequence (Fig. 2B), the result is 
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 As shown by Eq. (25) and (26), the effects of background gradients can be classified 
into g0-only-term based effects and cross-term based effects. The former only cause T2-
like signal attenuation and can be easily normalised out while the latter cannot be 
normalised out as they vary when ga varies and thus can significantly hamper diffusion 
determination. 



 

 

 The effects of background gradients have been observed since the discovery of NMR. 
In normal one-dimensional and multi-dimensional NMR experiments, these effects are 
called inhomogeneous line-broadening effects in contrast with homogeneous line-
broadening effects (i.e., T2 relaxation) [8]. In diffusion-aimed NMR experiments, the 
existence of susceptibility-induced background gradients is a double-edged sword: on one 
hand the background gradients convey structural information, which can be extracted by 
the use of special NMR techniques (e.g., [63]), and on the other hand the background 
gradients may significantly hamper the accurate diffusion determination using PGSE 
experiments (e.g., [71-74]). Below, we concentrate on how the background gradients can 
affect PGSE experiments deleteriously. 
 In most cases, the susceptibility-induced background gradients are inhomogeneous. 
Thus, spins inside different local structures may experience different background 
gradients. When the mean-squared displacement (MSD) of diffusing spins become 
comparable with the inhomogeneity of background gradients, the background gradients 
experienced by the spin ensemble will start to fluctuate through time. The effects of 
rapidly varying background gradients can be treated as a mechanism accelerating 
transverse relaxation [1, 72]. More slowly varying background gradients can be treated as 
a distribution f(g0) [75], for instance, a Gaussian distribution [72] 
 

  ( ) ( ) ( )1 22 2 2
0 0exp 2 2f g g σ πσ= − , (27) 

 

where σ2 stands for the variance of the background gradients. If it is assumed that during 
the diffusion time the background gradient experienced by a single spin is constant but 
different spins see different background gradients (NB with a distribution of f (g0)), the 
normalised echo attenuation is determined to be [72] 
 

   ( ) ( ) ( )2 22 2ln[ ] 3 1 0.5 2 2E g D Dγδ δ γ σ τ⎡ ⎤= − Δ − − Δ − Δ⎣ ⎦
, (28) 

 

and the determined diffusion coefficient can be written as [72] 
 

  ( )22 21 0.5 2 2D D D⎡ ⎤′ = − Δ − Δ⎣ ⎦γ σ τ . (29) 
 

Based on Eq. (29), the determined diffusion coefficient (i.e., apparent diffusion 
coefficient) is normally smaller than the true diffusion coefficient in the presence of 
background gradients.   

Suppression of the deleterious effects of background gradients   
In 1954, Carr and Purcell developed the Carr-Purcell π-pulse train sequence to suppress 
the effects of the g0-only-term in T2 experiments [76]. The essence of this sequence is to 
use a π-pulse train to “chop” the experimental period into small intervals so that the 
dephasing resulting from background gradients in one interval is cancelled by the 
dephasing in the subsequent interval. However, for the Carr-Purcell sequence, the 
calibration of the π pulses is critical. Meiboom and Gill [77] introduced the Carr-Purcell-
Meiboom-Gill (CPMG) sequence (Fig. 4), in which the phase of the π/2 pulse is shifted 



 

 

by 90° relative to the phase of the π pulses. The spin-echo attenuation of the CPMG 
sequence can be written as 
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where n is the number of π pulses and T = 2nτ. Thus, when n is large the spin-echo 
attenuation due to the g0-only-term term is greatly reduced. 

 

 
Fig. 4:  The CPMG sequence in the presence of background gradients. 
 
 Various methods have been developed for the suppression of the deleterious effects of 
the cross-term. The most commonly used method is the so-called Cotts 13-interval 
sequence [71] (Fig. 5) and the normalised spin-echo attenuation for this sequence can be 
written as  
 

  2 2 2
2 1 1 1 2 0

3 1exp ( )
4 12 2

E D g g gδγ δ τ τ δτ δ δ
⎛ ⎞⎡ ⎤⎛ ⎞= − + − + −⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦⎝ ⎠

. (31) 

 

Based on Eq. (31), the cross-term can be suppressed when δ1 = δ2. 



 

 

 
Fig. 5:  The Cotts 13-interval sequence [71]. 
 
 The validity of the Cotts 13-interval sequence is based the assumption that the spin 
ensemble feels a constant or slightly fluctuating background gradient. However, as 
mentioned earlier, when the MSD of diffusing spins become comparable with the length 
scale of the inhomogeneity of the background gradients, the background gradient 
experienced by the spin ensemble starts to fluctuate through time. Therefore, new 
methods were developed for the suppression of the deleterious effects of non-constant 
background gradients ([73, 78-80]). The most recently developed methods are shown in 
Fig. 6. The validity of all these sequences is based on the assumption that the background 
gradient felt by the spin ensemble keeps constant or slightly fluctuates during the coding 
periods (i.e., τ1 periods).  
 For the MAG-STE sequence [78, 79], the normalised spin-echo attenuation can be 
written as  
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Fig. 6: (A) The MAG-STE sequence; (B) the 13-interval sequence with gradients at MPFG ratios; 
(C) the MAG-PGSTE sequence. 



 

 

 For the 13-interval sequence with gradients at magic pulsed field gradient (MPFG) 
ratios [73, 79], the normalised spin-echo attenuation can be written as 
 

  ( )( ) ( )( ){
( ) }

22 2 2
2 1 d d 1 d e d e d

2
e e d d e d

exp 2 2 2

                                                      / 3

E D G F F F F G G

G F F G F F

γ δ τ τ τ

δ

⎡ ⎡ ⎤= − + + + − + −⎣ ⎦⎣

⎤⎡ ⎤− + + −⎣ ⎦⎦

 (33) 

 

when 
e e d dF G F G+ = + ,  

( )

2 2 2
1 1 1

e e

2 2e
1 1 1 2 1

1 8
3

1 2
3

G
F

δ δ δ δ τ
η

δ δ δ δ τ δ δ

+ + −
= =

+ + + −

, and  ( )2
1 1 2 1d d

2 2d
1 1

8 2
1 1

3

G
F

τ τ δ δ
η

δ δ δ δ

− −
= = −

+ +

. 

 
For the MAG-PGSTE sequence [80], the normalised spin-echo attenuation can 

be written as 
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 Although the sequences listed in Fig. 6 can successfully remove the cross-term 
resulting from non-constant background gradients, the diffusion-weighting efficiency of 
the gradients has been sacrificed [81]. Recently, Finsterbusch developed new suppression 
sequences with higher diffusion-weighting efficiency [81, 82].        

6. Conclusions 
 The PGSE NMR diffusion experiment has become the method of choice for the 
determination of self-diffusion in complex systems due to its non-invasive nature. 
Physically meaningful interpretations of diffusion data from complex systems require not 
only starting with high-quality artifact-free experimental data but also careful 
consideration of the different physical phenomena which result in changes in translational 
motion.  



 

 

References 
[1] J. Kärger, H. Pfeifer, W. Heink, Adv. Magn. Reson. 12 (1988) 1-89. 
[2] W. S. Price, Conc. Magn. Reson. 9 (1997) 299-336. 
[3] P. T. Callaghan, Aust. J. Phys. 37 (1984) 359-387. 
[4] W. S. Price, Concepts Magn. Reson. 10 (1998) 197-237. 
[5] E. O. Stejskal, J. E. Tanner, J. Chem. Phys. 42 (1965) 288-292. 
[6] P. Stilbs, Prog. Nucl. Magn. Reson. Spectrosc. 19 (1987) 1-45. 
[7] C. S. Johnson, Jr., Prog. Nucl. Magn. Reson. Spectrosc. 34 (1999) 203-256. 
[8] M. H. Levitt, Spin Dynamics: Basics of Nuclear Magnetic Resonance. Second ed.; 

Wiley, 2008. 
[9] R. Mills, J. Phys. Chem. 77 (1973) 685-688. 
[10] W. S. Price, NMR Studies of Translational Motion. In Press ed.; Cambridge 

University Press, 2009. 
[11] F. Bloch, Phys. Rev. 70 (1946) 460-474. 
[12] H. C. Torrey, Phys. Rev. 104 (1956) 563-565. 
[13] V. M. Kenkre, E. Fukushima, D. Sheltraw, J. Magn. Reson. 128 (1997) 62-69. 
[14] P. Atkins, J. De Paula, Atkins’ Physical Chemistry. 8th ed.; W. H. Freeman, New 

York, 2006. 
[15] W. S. Price, F. Tsuchiya, Y. Arata, J. Am. Chem. Soc. 121 (1999) 11503-11512. 
[16] W. S. Price, Annu. Rep. Prog. Chem., Sect. C: Phys. Chem. 96 (2000) 3-53. 
[17] J. Han, J. Herzfeld, Biophys. J. 65 (1993) 1155-1161. 
[18] W. S. Price, Curr. Opin. Colloid Interface Sci. 11 (2006) 19-23. 
[19] P. T. Callaghan, D. N. Pinder, Macromolecules 18 (1985) 373-379. 
[20] G. Fleischer, Polymer 26 (1985) 1677-1682. 
[21] P. T. Callaghan, D. N. Pinder, Macromolecules 16 (1983) 968-973. 
[22] R. Raghavan, T. L. Maver, F. D. Blum, Macromolecules 20 (1987) 814-818. 
[23] W. Brown, P. Zhou, Polymer 31 (1990) 772-777. 
[24] W. Brown, K. Mortensen, Macromolecules 21 (1988) 420-425. 
[25] Q. Ying, B. Chu, Macromolecules 20 (1987) 362-366. 
[26] P. T. Callaghan, D. N. Pinder, Macromolecules 14 (1981) 1334-1340. 
[27] N. M. Ahmad, F. Heatley, P. A. Lovell, Macromolecules 31 (1998) 2822-2827. 
[28] T. Dobashi, F. Yeh, Q. Ying, K. Ichikawa, B. Chu, Langmuir 11 (1995) 4278-4282. 
[29] P. G. De Gennes, Macromolecules 9 (1976) 587-593. 
[30] P. G. De Gennes, Macromolecules 9 (1976) 594-598. 
[31] B. J. Bauer, L. J. Fetters, W. W. Graessley, N. Hadjichristidis, G. F. Quack, 

Macromolecules 22 (1989) 2337-2347. 
[32] W. Hess, Macromolecules 19 (1986) 1395-1404. 
[33] W. Hess, Macromolecules 20 (1987) 2587-2599. 
[34] I. Teraoka, Polymer solutions: An introduction to physical properties. Wiley, New 

York, 2002. 
[35] A. Sikorski, P. Romiszowski, J. Chem. Phys. 104 (1996) 8703-8712. 
[36] N. Clarke, F. R. Colley, S. A. Collins, L. R. Hutchings, R. L. Thompson, 

Macromolecules 39 (2006) 1290-1296. 
[37] T. Cosgrove, P. C. Griffiths, Polymer 36 (1995) 3335-3342. 



 

 

[38] M. D. Lechner, E. Nordmeier, D. G. Steinmeier,  in: Polymer Handbook, 4th ed.; J. 
Brandrup; E. H. Immergut; E. A. Grulke; A. Abe; D. R. Bloch, (Eds.) Wiley: USA, 
1999; pp VII/85 - VII/198. 

[39] G. D. J. Phillies, Macromolecules 19 (1986) 2367-2376. 
[40] G. D. J. Phillies, Macromolecules 31 (1998) 2317-2327. 
[41] G. D. J. Phillies, Macromolecules 35 (2002) 7414-7418. 
[42] R. A. Waggoner, F. D. Blum, J. C. Lang, Macromolecules 28 (1995) 2658-2664. 
[43] G. Vancso, Eur. Polym. J. 26 (1990) 345-348. 
[44] A. Jerschow, N. Müller, Macromolecules 31 (1998) 6573-6578. 
[45] M. Kurata, Y. Tsunashima,  in: Polymer Handbook, 4th ed.; J. Brandrup; E. H. 

Immergut; E. A. Grulke; A. Abe; D. R. Bloch, (Eds.) Wiley: USA, 1999; pp VII/1 - 
VII/68. 

[46] B. R. White, G. J. Vancso, Eur. Polym. J. 28 (1992) 699-702. 
[47] D. W. Shortt, J. Liq. Chromatogr. 16 (1993) 3371-3391. 
[48] D. A. Skoog, F. J. Holler, T. A. Nieman, Principles of Instrumental Analysis. 5th 

ed.; Thompson Learning Inc., USA, 1998. 
[49] E. D. von Meerwall, J. Magn. Reson. 50 (1982) 409-416. 
[50] W. S. Price, F. Tsuchiya, Y. Arata, Biophys. J. 80 (2001) 1585-1590. 
[51] M. Nilsson, M. A. Connell, A. L. Davis, G. A. Morris, Anal. Chem. 78 (2006) 

3040-3045. 
[52] K. F. Morris, C. S. Johnson, J. Am. Chem. Soc. 114 (1992) 3139-3141. 
[53] K. F. Morris, C. S. Johnson, J. Am. Chem. Soc. 115 (1993) 4291-4299. 
[54] P. Stilbs, Anal. Chem. 53 (1981) 2135-2137. 
[55] P. N. Sen, Concepts Magn. Reson. 23A (2004) 1-21. 
[56] J. E. Tanner, E. O. Stejskal, J. Chem. Phys. 49 (1968) 1768-1777. 
[57] P. T. Callaghan, J. Magn. Reson. 113A (1995) 53-59. 
[58] P. P. Mitra, P. N. Sen, Phys. Rev. B: Condens. Matter 45 (1992) 143-156. 
[59] B. Balinov, B. Jönsson, P. Linse, O. Söderman, J. Magn. Reson. 104A (1993) 17-

25. 
[60] O. Söderman, B. Jönsson, J. Magn. Reson. 117A (1995) 94-97. 
[61] N. N. Yadav, W. S. Price,  in: Diffusion Fundamentals II, S. Brandani; C. Chmelik; 

J. Karger; R. Volpe, (Eds.) Leipzig University Press: Berlin, 2007; pp 40-51. 
[62] D. Topgaard, O. Soderman, Magn. Reson. Imaging 21 (2003) 69-76. 
[63] Y.-Q. Song, S. Ryu, P. N. Sen, Nature 406 (2000) 178-181. 
[64] Y.-Q. Song, Concepts Magn. Reson. 18A (2003) 97-110. 
[65] Z. H. Endre, P. W. Kuchel, B. E. Chapman, Biochim. Biophys. Acta 803 (1984) 

137-144. 
[66] P. W. Kuchel, B. T. Bulliman, NMR Biomed. 2 (1989) 151-160. 
[67] W. D. Williams, E. F. W. Seymour, R. M. Cotts, J. Magn. Reson. 31 (1978) 271-

282. 
[68] B. I. Bleaney, B. Bleaney, Electricity and magnetism. Oxford University Press, 

London, 1976. 
[69] E. M. Purcell, Electricity and magnetism. 2nd ed.; McGraw-Hill Book Co, New 

York, 1985. 



 

 

[70] P. W. Kuchel, B. E. Chapman, W. A. Bubb, P. E. Hansen, C. J. Durrant, M. P. 
Hertzberg, Concepts Magn. Reson. 18A (2003) 56-71. 

[71] R. M. Cotts, M. J. R. Hoch, T. Sun, J. T. Markert, J. Magn. Reson. 83 (1989) 252-
266. 

[72] J. H. Zhong, J. C. Gore, Magn. Reson. Med. 19 (1991) 276-284. 
[73] P. Galvosas, F. Stallmach, J. Kärger, J. Magn. Reson. 166 (2004) 164-173. 
[74] F. Stallmach, P. Galvosas, Annu. Rep. NMR Spectrosc. 61 (2007) 51-131. 
[75] I. Zupančič, Solid State Commun. 65 (1988) 199-200. 
[76] H. Y. Carr, E. M. Purcell, Phys. Rev. 94 (1954) 630-638. 
[77] S. Meiboom, D. Gill, Rev. Sci. Instrum. 29 (1958) 688-691. 
[78] P. Z. Sun, J. G. Seland, D. Cory, J. Magn. Reson. 161 (2003) 168-173. 
[79] P. Galvosas. PFG NMR-Diffusionsuntersuchungen mit ultra-hohen gepulsten 

magnetischen feldgradienten an mikroporösen materialien. PhD Thesis, Universität 
Leipzig, 2003. 

[80] G. Zheng, W. S. Price, J. Magn. Reson. 195 (2008) 40-44. 
[81] J. Finsterbusch, J. Magn. Reson. 191 (2008) 282-290. 
[82] J. Finsterbusch, J. Magn. Reson. 193 (2008) 41-48. 
 
 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


