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Abstract

We study molecular diffusion in (linear) nanopovath different types of roughness in the
so-called Knudsen regime. Knudsen diffusion represseéhe limiting case of molecular
diffusion in pores, where mutual encounters ofrti@ecules within the free pore space may
be neglected and the time of flight between submeiwollisions with the pore walls
significantly exceeds the interaction time betwées pore walls and the molecules. In this
paper we present in full detail the algorithm, wihwee used in our previous studies, where we
showed complete equivalence of self- (or tracerd) mansport diffusion.
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1. Introduction

Diffusion phenomena of gases in disordered andysomedia have been subject to intense
research for several decades [1-6] with applicationheterogenous catalysis [7], adsorption
[8] and separation [9]. Recent progress in syngeginanostructured porous materials [8,10]
has provided essentially unlimited options for theneration of purpose-tailored pore
architectures and there is an increasing demandcléoification of the main features of
molecular transport in such systems [11,12].

In matter conversion and separation, as two premniriechnical applications, bimodal
porous materials have attained particular attenfltnese materials contain “transport pores”
that ensure fast molecular exchange between theopamus regions, in which the actual
conversion and separation takes place [13]. Inethemnsport pores the so-called Knudsen
diffusion dominates, where the interaction of thelenules with the pore walls play the
crucial role and the intermolecular interaction dsnneglected. In this case, the molecules
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perform a series of free flights and change dicgcstatistically after each collision with the
pore wall.

Two different kinds of problems can be considered typical diffusion experiment or
simulation, respectively: The so-called transpaftudion, where the patrticles diffuse in a
non-equilibrium situation from one side of the systto the opposite side (under the
influence of a concentration gradient) and the-gglf tracer-) diffusion under equilibrium
conditions. These processes are described by d@insport diffusion coefficienD; and the
self- (or tracer) diffusion coefficierDs, respectivelyD; is defined by Fick’s % law as the
proportionality constant between the current dgnsitnd the concentration gradiedt/ox,

ac

j= _Dta (1)
while Ds is defined by the mean square displacenfehtt)) of a random walker
(x*(t)) = 2dDst 2)

after timet, whered is the dimension of the pore.

In our previous works [14-18] we showed equivatent self- (or tracer-) diffusion and
transport diffusion in the Knudsen regime. In thaper we present our diffusion algorithm in
full detail, including structure generation, paeiattributes, diffusion simulation and the
correction method (Enhancédmethod, EFM, see [18]) which we used to obtain giete
equivalence between both diffusion coefficients.

2. System structure

Usually a direct approach is used to calculatéisiohs of particle trajectories with pore
walls. Thereby every possible wall has to be chécka possible hits of the particle
trajectory. For simple systems with easy geomearasonly few different walls, especially in
two dimensions, such a direct approach may becserfi (indeed we used this approach in
the 2D calculations in [14]). But for systems wittany walls even an optimized wall sorting
scheme that searches for possible collisions ieroodl ascending distance of the wall from
the starting point of the particle (often used b @aphics) becomes too time-consuming.

In our algorithm, we use cube elementsbjcleg to generate the pore structure. Particle
trajectories are calculated successively by shath glements through adjoining cubicles.
Since only those cube elements are needed thabcally passed by the particle, the
calculation time hereby scales strictly linear wille system size, see Fig. 1. Hence large
systems can easily be implemented into our simaratAdditionally (not shown in the
figure), for simple geometries, the calculationdigan be optimized using larger cubicles.
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Fig. 1. Different approaches to determine the particleettjry. The computation time for a cube based
algorithm depends linearly on the system size, edera direct calculation of the intersection ofaatiple
trajectory with the pore wall grows with the numioépossible wall elements like(nlogn). Of course, the size
of a cubicle may be increased in (a) and (b).

el

2.1. The Framework

Our pore system is based on a periodic cubicct@attif sizec, max X Cymax X Czmax:
consisting of elementargubicles The cubicles assemble the porous structure oiMhae
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system and can be either empty, i.e. part of theripore, or solid, i.e. part of the pore walls.
Clearly, the particles only move inside the empupicles. If a particle hits a cubicle
belonging to the wall, it is reflected back intetempty part of the inner pore, where it can
move freely.

The location of any given particle is represeriigdhree different sets of coordinates, i.e.
by the 'house numbar'that summarizes the cubicles inside a certairoregee Fig. 2), the
cubicle vectorc = (c,, ¢y, ¢,) to the center of the given cubicle in the givesu$e' and the
incubicle coordinater = (r,1,,7,) inside the cubicle, with-1 <r,7,7, <1 and the
geometrical center at = r,, = r, = 0. Trajectories within individual cubicles are cdated
using basic mathematical formulas and the trajextothrough neighboring cubicles are
combined to the flight path. The particle velocisygiven byv = (vx,vy, vz), where the
absolute value stays constant during our simulations, but thislwa changed if necessary.

house number
0 1

pfl =l B, B, B
MY Y Y

cubicle number c
incubicle location

r=(n, Ty 7.}

L
Particle i :
, Ny, C 7y

Fig. 2: The framework of the simulation. The pore systetmased on a coordinate hierarchy: Empty or filled
cubicles determine the local geometry of the p@rey are embedded into a superstructure of houswbers
which repeat the local geometry throughout the pemgth. The location of a particle i is descriligdits house
numbern;, cubicle coordinatet; and incubicle coordinates.

Summarizing the cubicles of a certain geometriegion under one ‘house number" is very
convenient to keep the program flexible for diffgréasks. When implementing identical
periodic structures along the pore, the house numbanply enlarges the system of cubicles
by a multiplicative factomn,,,, by repeating the basic structure. In this pictue,compare
the cubicles to chambers in identical houses reppaiong the pore. The three different
coordinate frames of house numlrercubicle coordinaté and incubicle coordinate, are
visualized in Fig. 2. In this case of exactly repaphouses, only the cubicle structure of one
house has to be stored, making it possible to gémerbitrary large pores without needing
lots of computer memory. If, on the other hand,lbases are not identical, we have to store
the information of all houses. In this case the humsvenient way in terms of computer
memory is, to store the necessary information tgeneerate every house “on the fly” at the
moment when the particle enters, e.g. to storeséeel of the random number generator for
each house.

Networks of pores can be implemented by usingreettomponent “house numbering”
scheme like already used in the cubicle coordinald®e substructure then is repeated
periodically in all three directions

2.2. Structure generation

Every cubicle of the pore system can be generamgididually, giving rise to a whole
variety of shapes, ranging from simple linear pongth a smooth surface to percolation
clusters. In our studies [14-18] we used differiggrations of a generalized Koch surface. For
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this task we applied a random iterator that is shawFig. 3(a). Every surface element of a
given generation of the pore is divided into a gricdize4 x 4. The four grid elements in the
middle are alternating augmented or reduced, fieguih 2 cubicles more above und 2
cubicles less below the original surface. Thusitgrator is designed to be volume conserving
while doubling the surface with every generatioiguFe 3(b)-(d) show pores with different
roughnesses that were generated using this iterator

\\\/ ‘ ‘..‘1.¥ oy
% R
'f':;i"“\‘ﬁ‘_‘ = ‘
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(a) "W (b) (c)
Fig. 3: Examples of pore geometries. (a) Volume conseraimg) surface doubling random iterator used to
generate rough surfaces from (b) the basic smaarth, fc) and (d) show the 1st and 2nd iteratiospeetively.

3. Algorithm

Diffusion of particles through the above descriqwates is completely based on the
underlying cubicle geometry. Only trajectories desthe cubicles are calculated. Whenever a
particle leaves such a cubicle, it enters a neighmne and the next part of the trajectory is
determined.

3.1. Particles

The diffusion particles move within the framewark the above described hierarchy of
house numberandcubicles For every particle, at least the following datvér to be stored:
House numben, cubicle coordinate, locationr within the cubicle and velocity. The range
of the coordinates iS0<n<nNpu, 0=<cCxry,; <Cxyzmax» aNd —1=<1.,,<1,
respectively. The latter coordinate does not $tanm zero, which optimizes the programming
code as shown in the next chapter. It is convenigekeep track of additional parameters, e.g.
the timet after the particle was inserted at the insertmeation (e.gn,, ¢y, 7). Since this
algorithm is lattice based instead of time based, inandatory to also keep track of the time.
An example to extract discrete time steps is shbalaw.

3.2. From Cubicleto Cubicle

From the exact location and velocity of a partiafeerj steps #;, ¢;, 7, v;), given by the
house number, cubicle coordinate and location withe cubicle, it is possible to determine
the next location where the particle will hit therface of this cubicle, using thatercept
theoremfrom basic mathematics. On that basis, it is deiteed, if the particle is reflected or
if it enters the adjacent cubicle or if it evenezstthe next house number.

Depending on entry point and flight direction #hrevalls of the cubicle are possible
candidates for the next collision. To determine dbtual wall hit by the particle, one has to
calculate the time to get from the current locatios (rx,ry,rz) to all three (infinite)
bounding planes, embedding the three possible elathents. The minimal timg to reach
one of those bounding planes is

_Bl”

" i hlj_xl_rx - hlj_zl_rz
t* = min tx="v—,ty— Jt, =2 . (3)

x Vy Vz

The two remaining bounding planes would be crossddide of the current cubicle, so the
time to reach them can be discarded. The new isteubbordinates’ = (r',, ', r',) of the
particle will then be
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T yz =Teyz T Vxyz t" or 1r'=r+v-t*. (4)

Accordingly, the simulation time has to be increbbgt*. That component af’ which is on

the boundary of the present cubicle always has@yer value oft1. It can directly be used
to determine the adjacent cubiafé on whose boundary the particle is located now. We
truncate all three vector components 70fto integer values and add the corresponding
component of, yielding the new cubicle coordinaté

Cyyz = Cxyz 1INty 7). )(5

This simple formula includes every possibility oty point and flight direction by exploiting
the properties of the range of the incubicle cauathr’.
Including periodic boundary conditions in the cddtion of ¢, this equation is changed to

C’x,y,z = (Cx,y,z + int(rlx,y,z) + Cx,y,z,max)mOdCx,y,z,max- (6)

Hereby the house number has to be increased ceataxt appropriately.
Now, two cases have to be taken into account. i§ empty, the particle starts the next
computation step in the new cubiclg, , = ¢’, ,, , with the new incubicle coordinates

Tyz = r’x,y,z —2- int(r’x,y,z)- (7)

Simultaneously that coordinate that shares the deynbetween old and new cubicle inverts
its sign, while the others remain unchanged:’Ifs filled and the particle may not diffuse
inside, ¢’ is discarded, the particle remains in cubi€leand the starting point of the next
computation step is the end point of the previons 3, , =r',, .. In this case, a new

velocity vector through the cubicle has to be choaecording to an appropriate reflection
law.

3.3. Reflections

From many possible reflection laws, like specudarglossy reflection, we choose the
diffuse reflection governed blyambert’'s cosine lawA particle emitted thermally from a
surface leaves with an anglec [—n/2, /2] to the normal component of the surface, where
9 occurs with a probabilitd P (9, ¢) ~ cos9d ). Herebyd(} is the solid angle, which is equal
to dY in two dimensions and equal $ind9ddde in three dimensions. This establishes the
same luminance in every direction. In some works,dolid anglel() is not clarified and we
therefore believe that sometimes the salf€d, ¢) ~ cosddy behavior is applied in 2D and
3D. In this case, anomalous diffusion effects megea that are beyond the scope of this
article. These effects can be used to test thecoimplementation of Lambert’s law.

4. Simulations

Simulations of different properties usually implyferent approaches. As examples we show,
how transport diffusion and self-diffusion, both the Knudsen regime, have to be
implemented. Additionally we illustrate the coriiect method that was used in [18] and how
to relax a many particle system into a stationsaes

4.1. Self- (or tracer-) diffusion

Calculating self- (or tracer-) diffusion impliedgstinct time scale, since for every discrete
time t; the mean square displacemént(t;)) has to be calculated. This is accomplished by
linear interpolation within the cubicles. Everyaahtion step starts at a certain titar, ,, ,
and ends at a timg =t + t* atr’,,, .. If (int)t < (int)t’ the simulation has advanced more
than one time step since the last measuremenhidrcase the exact location at the discrete
times is determined by
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r(int(t")) = 7(t) + (F(t) = 7)) - (int(t) — t)/t". (8)

Depending on the flight path, within the cubicle mohan one discrete time step may have
passed, which has to be taken into account acagiydiRrom these discrete measurements of
7, the mean square displacemértt(t;)) can easily be averaged, leading to the self sliffu
coefficientDs

This method to extract discrete time steps alsotbde used for other measurements, e.g.
relaxation into stationarity or the later descriloedrection method for transport diffusion.

4.2. Transport diffusion

In the simulations of the transport diffusion daeént D;, a concentration gradient
dc(x)/0x along the pore length is applied with the concentratioas= ¢, = 1 on the left
hand side and = 0 on the right hand sidéc > L). All particles start ak = 0, which means
Ny = 0,cy0 = 0,70 = —1, with a randomly distributed velocity,. Then they perform a
random walk in 2D or 3D, according to the chosditection law. They are absorbed when
they hit either the left boundary & 0, where they entered) or the right boundary at L
(M = Nmax — 1, Cxi = CxmaxTx; = +1), which corresponds to Dirichlet boundary
conditions. After some relaxation time, this leanls constant current densjtyas described
above.

Since relaxation of a particle flow into a stadonstate is usually very time-consuming, as
the particle flux has to be monitored throughow #ystem, we use a method proposed by
Evanset al [19]. The particle fluxj, in x-direction is derived from the (transmission)
probability f; that a particle starting at the left boundary Wekve the pore through the right
boundary,

Jx = Cofelvy) (9)

where(v,) is the mean velocity ir-direction.
Combining this equation with Fick’s law yields

d -1
D, = —coflvn} () (10)
Usually the concentration gradient is assumed tcopstant and equal to
2~ _¢y/L. (11)

dx
We can now combine both equations to

Dy = f{ve)L. (12)

Accordingly, for calculatingf;, N random trajectories are considered that staxt-at0 and
end when eithex = 0 orx = L is reached.

4.3. Correction method

A problem arises if the concentration gradighi/dx within the pore is not well
approximated by a constant. This can be due tolsiraptrance effects, as shown in [18],
where theEnhanced fmethodwas introduced for correction. If deviations franconstant
concentration gradient occur, this gradient cary beltaken as a starting point.

To obtain the correct value df, we need the concentratiox) within the pore and the
associated concentration gradi@a(x)/dx. For this purpose we need to determine the exact
location for each particle after every integer tistep. The discrete times can be easily
extracted through linear interpolation as shownvab&igure 4 shows the schematics of such
a procedure 2D, where(x) is calculated from the trajectories used to caleuf;. The
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particle positions at every time step are indicabgddots. The histogram over all particle
positions of the whole simulation is shown at tb&tdm of the figure.

Fig. 4. Schematic for generating the particle histogram hewdce c(x) for two particle trajectories in two
dimensions. Every time step, the histogram (belsviicremented at the appropriate location.

Normalized this histogram describes the time-ayetlaconcentratiod(x), which can be
identified as equal to the ensemble averaged ctratiem c(x) using the ergodic hypothesis.
The corresponding concentration gradient then jpdieghto Fick’s law.

4.4. Relaxation into stationarity

To compare the results from Evans’ method orritsa@aced version, it might be necessary
to, indeed, relax the system into a stationaryestahere the particle concentration does not
depend on the time. This can be very time consumsigce the particle flux has to be
monitored throughout the system and deviations tabe compared.

In our simulations we divide the pore length iatpual sized bins (e.g. every house number
corresponds to one bin) and insert a fixed numbeedicles every time step until the flux of
entering and exiting particles is statistically alquAgain, the particle locations at discrete
time steps are determined as shown above. We @raidtate as stationary, if the particle
concentration between two given discrete time sw@pa fixed number of bins differ at
maximum by a predetermined threshold value (sed).[IBhe discrete time steps are
determined as described above.

5. Conclusions

We have presented the algorithm that we used instudies of molecular diffusion in
narrow pores in the Knudsen regime in full detsle laid out the structure of the pore
system, including an example to generate Koch shapegh pores. This framework of the
pore system is based on small cubicles whereisuheessive steps of free flight or reflection
are calculated. These elementary building blocksesmbedded into a periodic structure to
enlarge the system size. The diffusing particles described by their velocity and three
different coordinate sets, incubicle coordinatecubicle vectorc and house number. The
algorithm depends only on the system size and nspéetely independent of the number of
walls, making it perfectly adequate for very roymire surfaces. A discrete time scale can be
extracted in run-time during the simulation; tresneeded since many applications are based
on discrete time intervals. We also showed exampfegifferent tasks the algorithm can
accomplish, e.g. how to determine self-diffusiontransport properties and relaxation into a
stationary state. Based on these examples it shmilgossible to enhance the algorithm to
serve many other purposes, e.g. the inclusion riicpainteractions.
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The authors are open for any further questionarcegg the simulation algorithm.
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