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Abstract 
The science of diffusion had its beginnings in the nineteenth century, although the 
blacksmiths and metal artisans of antiquity already used diffusion phenomena to make 
such objects as hardened iron swords and gilded bronze wares. Diffusion as a scientific 
discipline is based on several cornerstones. The most important ones are: (i) The 
continuum theory of diffusion originating from the work of the German physiologist 
Adolf Fick, who was inspired by elegant experiments on diffusion in gases and of salt in 
water performed by the Scotsman Thomas Graham. (ii) The Brownian motion, observed 
for the first time by the Scotish botanist Robert Brown, was interpreted decades later by 
the famous German-Jewish physicist Albert Einstein and almost at the same time by the 
Polish physicist Marian von Smoluchowski. Their theory related the mean square 
displacement of atoms to the diffusion coefficient. This provided the statistical 
cornerstone of diffusion and bridged the gap between mechanics and thermodynamics. 
The Einstein-Smoluchowski relation was verified in tedious experiments by the French 
Nobel laureate Jean Baptiste Perrin and his coworkers. (iii) Solid-state diffusion was first 
studied systematically on the example of gold in lead by the British metallurgist Roberts-
Austen in 1896. Using a natural radioisotope of lead the Austro-Hungarian Georg von 
Hevesy and his coworkers performed for the first time studies of self-diffusion in liquid 
and solid lead around 1920. (iv) The atomistics of diffusion in materials had to wait for 
the birthday of solid-state physics, heralded by the experiments of the German Nobel 
laureate Max von Laue. Equally important was the perception of the Russian and German 
scientists Jakov Frenkel and Walter Schottky, reinforced by the experiments of the 
American metallurgist Ernest Kirkendall, that point defects play an important role for the 
properties of crystalline substances, most notably for those controlling diffusion and the 
many properties that stem from it. (v) The American physicist and twofold Nobel laureate 
John Bardeen was the first who pointed out the role of correlation in defect-mediated 
diffusion in solids, an aspect, which was treated in great detail by the American physicist 
John Manning. (vi) The first systematic studies of grain-boundary diffusion, a transport 
phenomenon of fundamental as well as technological importance, were initiated by the 
American materials scientist David Turnbull. 
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This paper is devoted to some major landmarks and eminent pioneers of diffusion from 
the nineteenth and twentieth century. The heroes of the nineteenth century were Graham, 
Brown, Fick, Roberts-Austen, and Boltzmann. In the twentieth century diffusion science 
was driven by significant contributions of several Nobel laureates, such as Einstein, 
Arrhenius, Perrin, von Hevesy, and Bardeen. 
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1. Introduction 
The Latin word ‘diffundere’ means ‘to spread out’. Depositing a droplet of ink in a basin 
of water without stirring gives a simple demonstration of diffusion. After a few hours the 
colour will have spread a few millimetres and after several days the solution will be 
uniformly coloured. Diffusion is caused by the Brownian motion of atoms or molecules 
that leads to complete mixing. The water molecules even in pure water are in continuous 
random motion; their migration through the liquid constitutes an example of self-
diffusion. This atomic-scale motion is fairly rapid in gases – gas diffusion progresses at a 
rate of centimetres per second. In liquids it is slower but still easy to visualize – its rate is 
typically fractions of millimetres per second. It is more difficult to observe diffusion in 
the solid state. Nonetheless, diffusion in solids occurs. It is a fairly slow process and the 
rate of diffusion decreases strongly with decreasing temperature. Near the melting 
temperature of a metal a typical rate is about one micrometer per second; near half of the 
melting temperature it is only on the order of nanometres per second. 
 
Until the end of the nineteenth century the paradigm that diffusion occurs only in gases 
and liquids was widely accepted by the scientific community. It was mainly due the 
pioneering work of William Roberts-Austen and Georg von Hevesy that this paradigm 
had to be abandoned. Having in mind the crystal structures of solids, one can appreciate 
that diffusion of atoms or ions through those generally ‘dense’ structures is difficult. The 
energies necessary to ‘squeeze’ atoms or molecules through perfect lattice structures are 
so high that diffusion may become virtually impossible. A deeper knowledge about 
diffusion requires information on the position of atoms and how they move in solids. It 
has been found that imperfections on the atomic scale play a paramount role. Specifically 
in crystalline solids, the atomic mechanisms of diffusion are closely connected with 
lattice defects. Point defects like vacancies or interstitials are the simplest defects and 
often mediate diffusion in crystals. Dislocations, grain-boundaries, phase boundaries, and 
free surfaces are other types of defects. They can act as high-diffusivity paths (diffusion 
short circuits), because the mobility of atoms along such extended defects is usually 
much higher than in the lattice.  
 
Solid-state diffusion is a process that is fundamental in the art and science of materials 
and thus forms an important topic of solid-state physics, physical metallurgy, and 
materials science. Diffusion processes are relevant for the kinetics of many 
microstructural changes that occur during preparation, processing, and heat treatment of 
materials. Typical examples are nucleation of new phases, diffusive phase 
transformations, precipitation and dissolution of a second phase, homogenisation of 



 

alloys, recrystallisation, high-temperature creep, and thermal oxidation. Diffusion and 
electric conduction in ion conductors are closely related phenomena. Direct applications 
of diffusion concern a multitude of important technological processes such as doping 
during fabrication of microelectronic devices, the operation of solid electrolytes for 
batteries and fuel cells, surface hardening of steel through carburisation or nitridation, 
diffusion bonding, and sintering. 

2. Pioneers and Cornerstones of Diffusion 

2.1 Thomas Graham – diffusion in gases 
The first systematic studies of diffusion in gases were probably performed by the Scottish 
chemist Thomas Graham (1805 – 1869). He is considered as one of the leading chemists 
of his generation. Graham was born in Glasgow. His father was a successful textile 
manufacturer. He wished his son to enter the Church of Scotland. Defying his father's 
wishes, Graham studied natural sciences, developed a strong interest in chemistry and 
became professor of chemistry in 1830 at the Andersonian Institute (now Strathclyde 
University) in Glasgow. Later he became professor of chemistry at several colleges 
including the Royal College of Science and Technology and the University of London in 
1837. Graham also founded the Chemical Society of London and became its first 
president. In 1855 Graham succeeded Sir John Herschel as ‘Master of the Mint’ in 
London following the tradition – established by Sir Isaac Newton – of distinguished 
scientists occupying the post. Graham is one of the founders of physical chemistry and he 
discovered the medical method of 'dialysis'. 
 

Graham initiated the quantitative study of 
diffusion in gases, largely conducted over the 
years 1828 to 1833 [1, 2]. He recognized that 
gases of different nature, when brought into 
contact, do not arrange themselves according to 
their density with the heaviest undermost. Instead 
they diffuse through each other and finally achieve 
an intimate state of mixture. In one of his articles 
he explicitly stated what we now call Graham's 
law: 'The diffusion or spontaneous intermixture of 
two gasses is effected by an interchange in 
position of indefinitely minute volumes of the 
gases, which volumes are not of equal magnitude, 
being, in the case of each gas, inversely 
proportional to the square root of the density of 
that gas.' In modern language: 
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where vA and vB denote mean atom velocities and MA and MB the molar masses of A and 
B  molecules. The crucial point about Graham's work on diffusion in gases was that it 
could be understood by the kinetic theory of gases developed by Maxwell and Clausius 
shortly after the middle of the 19th century. Graham's law can be attributed to the 
equipartition of kinetic energies between molecules with different molecular masses: 
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Here kB denotes the Boltzmann constant and T is absolute temperature. In this way 
diffusion was connected with the more or less random motion of atoms or molecules, and 
the idea of the mean free path entered science. The notion of the diffusion coefficient was 
not yet established when Graham performed his experiments. It was introduced about 
three decades later by Fick. However, when Maxwell calculated the diffusion coefficient 
of CO2 in air from Graham’s data, he obtained a value which was accurate to 5% with 
modern studies. 
Later on Graham also extended his studies to diffusion of salts in liquids [3] and to the 
uptake of hydrogen in metals. He noticed that diffusion in liquids was at least several 
thousand times slower than in gases. Combined with the number of Avogadro, Graham’s 
law permits the determination of molecular masses. Later on, the Tschech-Austrian 
physico-chemist Johann Joseph Loschmidt (1821 – 1895) used an experimental device 
similar to that of Graham for his classical measurements of diffusion in several gas pairs. 

2.2 Adolf Fick – phenomenological laws of diffusion 
A major advance in the field of diffusion came from the work of the German physiologist 
Adolf Eugen Fick (1829–1901). He was born in Kassel, Germany, as the youngest of nine 
children. His father, a civil engineer, was a superintendent of buildings. During his 
secondary schooling, Adolf Fick was delighted by mathematics, especially by the work of 
the French scientists Poisson and Fourier. He entered the University of Marburg with the 
intention to specialise in mathematics, but switched to medicine on the advice of an elder 
brother, who became later a professor of law. Fick received his doctorate with a thesis on 
'Visual Errors due to Astigmatism'. He spent the years from 1852 to 1868 at the 
University of Zürich, Switzerland, as an assistant of Carl Ludwig, a professor of anatomy 
and physiology. After sixteen years in Zürich, Fick was appointed to a chair in 
physiology in Würzburg, Germany. 
 
Fick's papers on diffusion are signed as 'Demonstrator of Anatomy, Zürich' and they were 
published in high-ranking journals. His approach was a phenomenological one and it uses 
a continuum description. Nowadays, we would call his theory a 'linear response' 
approach. Fick is even better known in medicine. He published a well-rounded 
monography on 'Medical Physics' [6] and a textbook on 'The Anatomy of Sense Organs'. 
He became an outstanding person in the small group of nineteenth century physiologists 
who applied concepts and methods of physics to the study of living organisms, and 
thereby laid the foundations of modern physiology. 
 



 

Graham's work on the diffusion of salt in water 
stimulated Fick to develop a mathematical framework 
for diffusion phenomena [4, 5] using the analogy 
between Fourier's law of thermal conduction (or Ohm’s 
law of electric conduction) and diffusion [7, 8]. He 
postulated that the flux of salt occurring in a unit of 
time between two infinitesimal test volumes of space 
filled with solutions of the same salt but with different 
salt concentration must be directly proportional to the 
concentration difference and inversely proportional to 
the distance between the test volumes. In modern 
notation Fick postulated that the flux of matter j  
in x direction is proportional to the pertaining gradient 
of concentration C:  
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This is what we nowadays call Fick’s first law. D is 
denoted as diffusion coefficient or diffusivity. In his 
paper, Fick uses the symbol k instead of D, which he 

rightly called ‘a constant dependent upon the nature of the substance’. Using the 
conservation of matter in analogy to Fourier’s treatment, where the conservation of heat 
energy is important, Fick derived the second fundamental law of diffusion 
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which we nowadays call Fick’s second law or diffusion equation. Mathematically, the 
diffusion equation is a linear partial differential equation of second order. 
 
In his own experiments Fick used Graham’s experimental set-up for diffusion of salt in 
water, which consisted either of a vertical cylinder or a funnel. For a cylinder the cross 
section q  is constant, whereas for a funnel it is a function ( )q x . In this case, instead of 
equation (4), Fick had to use the modified equation 
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In his experimental set-up the bottom of the tube (cylinder or funnel) was placed in a 
reservoir of saturated salt solution and both, tube and reservoir, were immersed into a 
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large vessel of pure water. In this way, a concentration gradient of salt in water was 
created in the tube. The salt concentration versus depth was measured gravimetrically via 
the density of the solution, using a small bulb hanging on the arm of a balance. In the 
analysis of his experiments Fick considered only stationary states. For a cylinder the 
stationary solution is linear: .C a bx= +  For a funnel, whose cross section is 
proportional to 2x , the solution is ' 'C a b x= − . Recently, Jean Philibert plotted Fick’s 
data according to these stationary solutions and found very good agreement (see Figs. 2 
and 3 in [9]). Fick also measured the diffusion coefficient using three cylinders of 
different length. When the stationary state was reached, he determined the flux of salt that 
diffused out of the upper end of the cylinder. He obtained a diffusion coefficient of about 
1.2x10-6 cm2s-1 at temperatures between 15 and 22 °C. Fick's vital contributions to the 
field of diffusion were to introduce the fundamental equations, to define the diffusion 
coefficient and to measure the diffusion coefficients of salt in water. 
 
Mathematical solutions of Fick's equations began with the nineteenth century luminaries 
Josef Stefan (1835 – 1893) [10] and Franz Neumann (1798 – 1895), who were among the 
first to recognise the significance of boundary conditions for solutions of the diffusion 
equation. Stefan gave solutions of Fick’s second law either as a trigonometric series or as 
the complementary error function. For specimens of finite length Stefan recommended to 
use the principle of reflection plus superposition, which is based on the linearity of 
equation (4). He also considered diffusion from a slab source of width Δ2  having a 
uniform initial concentration 0C  joined by two half-spaces. In modern language the 

concentration ),( txC  at position x and time t  is 
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where erf denotes the error function. Stefan calculated numerical tables of 

concentration-depth profiles with / 2h Dt  as a parameter, where h  is the thickness of 
successive layers used for chemical analysis. Later on Roberts-Austen used Stefan’s 
tables to evaluate his data. Another important solution of Fick’s second law is the thin-
film solution or Gaussian solution. It applies when a thin layer of M diffusing atoms per 
unit area is deposited initially at 0=x : 
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This solution is frequently used for the analysis of radiotracer experiments (see below 
and Fig. 6). 



 

2.3 Sir William Chandler Roberts-Austen – solid-state diffusion: 
Already in ancient times reactions in the solid state such as surface hardening of steels 
were in use, which according to our present knowledge involves the diffusion of carbon 
atoms in the crystal lattice of iron. Nevertheless, until the end of the nineteenth century 
the paradigm 'Corpora non agunt nisi fluida' was widely accepted by the scientific 
community. According to Barr [11], perhaps Robert Boyle (1627 – 1691) reported the 
first clear experimental evidence for solid-state diffusion in a study called‘The Porosity of  
Bodies’. He observed the penetration of a ‘solid and heavy body’, probably zinc in a 
small coin of copper. The side of the coin exposed to zinc took a golden colour, while the 
other side kept its original colour. He also observed that ‘the golden colour had 
penetrated a pretty way beneath the surface of the coin’. It appears that Boyle has 
observed the formation of brass by solid-state diffusion between zinc and copper. 
 
Sir William Chandler Roberts-Austen (1843 – 1902) records his devotion to diffusion 
researches as follows [12]: '... My long connection with Graham's researches made it 
almost a duty to attempt to extend his work on liquid diffusion to metals.'  Roberts-Austen 
graduated from the Royal school of Mines, London, in 1861 and became personal 
assistant to Graham at the Mint. After Graham's death in 1869 Roberts-Austen became 
first 'Chemist and Assayer of the Mint', a position he occupied until his death. He was 
appointed professor of metallurgy at the Royal School of Mines in 1882 and was 
knighted by Queen Victoria in 1899. He was a man of wide interests with charm and an 
understanding of people, which made him very popular. He conducted studies on the 
effects of impurities on the physical properties of pure metals and alloys and became a 
world authority on the technical aspects of minting coins. His work had many practical 
and industrial applications. Austenite – a non-magnetic solution of carbon in iron – is 
named after Sir Roberts-Austen. His studies of the iron-carbon phase diagram together 
with the micrographs of carburized iron, taken by his French friend Floris Osmond (1849 
– 1912), clearly showed the penetration of carbon inside the bulk of iron. 
 
Roberts-Austen perfected the technique for measuring high temperatures adopting 
platinum-based thermocouples, which were just invented at that time by the French 
physico-chemist Henry LeChatelier (1850 – 1936).  As the leading scientist at the Mint, 
Roberts-Austen had at his disposal very good assessment tools to study systems based on 
noble metals. In spite of Ostwald’s warning ‘… accurate measurements on diffusion is 
one of the most difficult problems in physics’, Roberts-Austen conducted a series of 
remarkable diffusion experiments. He studied the diffusion of gold, platinum, and 
rhodium in liquid lead; of gold, silver, and lead in liquid tin and of gold in bismuth. These 
solvents were selected because of their relatively low melting temperatures. The 
solidified samples were sectioned and the concentration of the diffused species 
determined in each section using the high precision assaying techniques (precision 
balance) available at the Mint.  
 
In the experiments on Au and Pt in liquid lead, typically 12 to 14 sections were taken and 
diffusion coefficients were determined by comparison with Stefan’s solution of Fick’s 
second law [12]. However, in the printed version of the Bakerian Lecture the 



 

experimental data and their analysis are only presented in tabular form [12]. Figure 1 
shows a graphical representation of a Au profile that was obtained from the data 
compiled in Roberts-Austen´s Table A and that originated from diffusion at 492 °C for 
6.96 days. The data points in Fig. 1 reproduce the weight fractions of Au in cylindrical 
sections of 1.054 cm height, which were cut from a vertically arranged lead column 
inside a tube with a total height of about 15 cm. Initially, all gold was homogeneously 
distributed over twice the section height (2.108 cm) in the low end of the lead cylinder. 
As usual, each concentration value in Fig. 1 is assigned to the middle of the pertaining 
section. Using modern computer facilities, we have fitted the data with the aid of Eq. (5) 
by setting Δ = 2.108 cm and by ignoring the last section of the lead column. In Fig. 1, the 
almost perfect match between the fitted solid line and the experimental data demonstrates 
the high quality of Roberts-Austen´s work. Moreover, our fitting procedure results in a 
Au diffusivity at 492 °C of 3.4x10-5 cm2s-1 (2.97 cm2d-1), which is very close to the value 
given in the original article (3.00 cm2d-1) [12]. 
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Even more important is that Roberts-Austen applied his experimental techniques to the 
study of gold diffusion in solid lead. To this aim, `thin plates of gold were fused on to the 
end of cylindrical rods´ which varied in diameter and length depending on temperature 
and the specific experiment. Compared to the measurements in molten lead the challenge 
was much greater not only because of the smaller penetration depths but in particular due 
to the extremely low solubility of Au in solid Pb. Figure 2 displays two of the better 
diffusion profiles that were reconstructed from the data compiled in the original paper 
[12] and then fitted by the complementary error function. In this procedure, the high data 
point near the front end was omitted, which agrees with Roberts-Austen´s treatment 
stated as follows: `The first section in each case, which of course contained pieces of 
partially alloyed gold, was neglected´. Our analysis yields DAu = 5.1x10-7 cm2s-1 
(0.044 cm2d-1) at 251 °C, which is about 50% higher than the initially reported value 
(0.03 cm2d-1, Experiment II [12]). For the 200 °C profile we obtain DAu = 1.0x10-7 cm2s-1 

Fig. 1: Diffusion profile 
of Au in molten lead as 
reconstructed from the 
data tabulated in the 
original work of Roberts-
Austen [12]. The solid 
line is a least-squares fit 
based on Eq. (5). 



 

(0.0087 cm2d-1) which compares well the original result of (0.008 cm2d-1, Experiment II). 
At yet lower temperatures (165 °C and 100 °C) only three or two sections could be 
measured, so that the reported data should be considered as rough estimates only. 
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It is interesting to note that the diffusion coefficients of gold in lead reported by Roberts-
Austen are close to those determined by modern techniques using radioactive isotopes. 
This is seen in Fig. 3 where most of his data points are only about a factor of 2 below the 
straight line representing the radiotracer results of Weyland et al. (1971) collected in Ref. 
13. Taking our evaluation of his data, the agreement tends to be even somewhat better. A 
similar conclusion can be drawn for the solubility of Au in solid Pb, which may be taken 
in Fig.2 from the extrapolation of the fitted curves to zero penetration depth. This 
approach complies with Roberts-Austen´s statement that `the initial concentration of the 
solid lead-gold alloy from which diffusion starts was deduced from the general trend of 
the concentration curves …´. 
 

Fig. 2: Diffusion profiles of 
Au in solid lead as 
reconstructed from the data 
tabulated in the original 
work of Roberts-Austen 
(Experiment II for both 
temperatures) [12]. The 
solid lines are least-squares 
fits of the complementary 
error function. 
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With hindsight it can be said that the choice of the system gold in lead was really 
fortunate. Nowadays, we know that the diffusion of noble metals in lead is exceptionally 
fast in comparison to most other diffusion processes in solids (see, e.g. [13]). 
 

2.4 Svante Arrhenius – temperature dependence of 
diffusion: 
The most surprising omission in Roberts-Austen's work 
is any discussion of the temperature dependence of the 
diffusion coefficient. Actually, Roberts-Austen 
observed a temperature dependence of Au diffusion in 
lead (see Fig. 3). However, he did not discuss this in his 
‘Bakerian Lecture’ of 1896 [12]. Historically, the 
temperature dependence of reaction rates and 
diffusivities, now generally referred to as 'Arrhenius 
law', is named after the Swedish scientist Svante 
Arrhenius (1859 – 1927). He proposed this relation in 
his paper of 1889 [14] to describe reactions rate of cane 
sugar as well as reaction rates of several published 
chemical reactions. Arrhenius received a doctor degree 
in chemistry in Uppsala, Sweden, in 1894. He was 
awarded a travel fellowship which enabled him to work 
with Ostwald in Riga, Latvia, and with Kohlrausch in 
Würzburg, Germany. He also cooperated with 

Boltzmann in Graz, Austria, and with van 't Hoff in Amsterdam, The Netherlands. 
Arrhenius was awarded the Nobel prize in chemistry in 1903. It appears that the 

Fig. 3: Comparison of the Au 
diffusivity in solid lead 
reported for the first time by 
Roberts-Austen (closed circles 
[12]) with that obtained by 
modern radiotracer techniques 
(solid line [13]) 

The British metallurgist Sir 
William Chandler Roberts-
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Arrhenius law for chemical reactions was also proposed by the Dutch scientist Jacobus 
Hendrik van 't Hoff (1852 – 1921), the first Nobel laureate in chemistry (1901). 
 
The suggestion that the temperature dependence of the diffusivity in solids obeys what 
we now call the Arrhenius law,  
 

)/exp(0 TkQDD B−= , (7) 
 

was made about thirty years later by Saul Dushman and Irving Langmuir in 1922 [15], 
and independently by Braune in 1924 [16]. Langmuir considered this relation as an 
empirical one, without mentioning Arrhenius. Nowadays, Q is called the activation 

enthalpy of diffusion and 0D  the pre-exponential factor. 

2.5 Brownian motion – Albert Einstein, Marian Smoluchowski and Jean Baptist 
Perrin 
So far we have focused on the phenomenological approach of diffusion condensed in 
Fick’s laws, their mathematical solutions, and on experiments that utilize solutions of the 
diffusion equations. In this section we highlight the cornerstones of a physical, more 
atomistic approach of diffusion. 
 
The phenomenon of a never ending, irregular motion of small particles suspended in a 
liquid had been long known. It was discovered by the Scottish botanist Robert Brown 
(1773 – 1858). Brown was the son of an Episcopalian priest. He studied medicine in 
Edinburgh but did not finish his degree. At the age of twenty-one he enlisted in a newly 
raised Scottish regiment. At that time he already knew that his true interests did not lie in 
medicine and he had already acquired some reputation as botanist. On a visit to London 
in 1798, to recruit for his regiment, he met the botanist Sir Joseph Banks, president of the 
Royal Society, who recommended Brown to the Admiralty for the post of a naturalist 
aboard of a ship. The ship was to embark on a surveying voyage at the coasts of 
Australia. Brown made extensive plant collections in Australia and it took him about five 
years to classify approximately 3900 species he had gathered, almost all of which were 
new for science. Later, Charles Darwin referred to him as '... princeps botanicorum'. In 
addition to collecting and classifying, Brown made several important discoveries. 
Perhaps the most celebrated by biologists is his discovery that plant cells have a nucleus. 
 
Robert Brown is well-known in science for his observation of the random movement of 
small particles in liquid suspension first described in 1827 in a paper entitled 'A brief 
account of microscopical observations in the months June, July and August 1827 on the 
particles contained in pollen...', which was originally intended for private circulation, but 
was reprinted in the archival literature shortly after its appearance [17]. Brown 
investigated the way in which pollen acted during impregnation. One of the plants he 
studied under the microscope was Clarkia pulchella, a wildflower found in the Pacific 
Northwest of the United States. The pollen of this plant contains granules varying from 
about five to six micrometers in linear dimension. It is these granules, not the whole 



 

pollen grains, upon which Brown made his observation in his microscope. He wrote ' ... 
While examining the form of these particles immersed in water, I observed many of them 
very evidently in motion ... . These motions were such as to satisfy me, after frequently 
repeated observation, that they arose neither from currents in the fluid, nor from its 
gradual evaporation, but belonged to the particle itself'. This inherent, incessant motion 
of small particles is nowadays called Brownian motion. 
 

Brownian motion was carefully re-investigated by the 
French scientist Georges Gouy (1854 – 1926) [18]. He 
studied different kinds of particles in various fluids. He 
showed that the motion is independent of external forces 
and less intense in more viscous fluids. He concluded: 
‘Brownian motion, unique among physical processes, 
makes visible the constant state of internal restlessness 
of bodies in the absence of any external cause …It is a 
weakened and remote testimony of thermal molecular 
motions.’ However, until about 1900 not much progress 
was made in the theoretical understanding of Brownian 
motion although developments in the theory of heat and 
kinetic theory stimulated new experiments and 
conjectures. It is striking, however, that the founders 
and developers of kinetic theory, Maxwell, Boltzmann 
and Clausius, never published anything on Brownian 
motion. The reason for the lack in progress was that the 
major studies of that period focused on the particle 

velocities. Measurements of the particle velocities gave puzzling results. The reason is 
that the path of a small particle, on the length scales available from observations in a 
microscope, is an extremely erratic curve. In modern language we would say that it is a 
fractal, a concept developed many decades later by Mandelbrot [19]. Such curves are 
almost nowhere differentiable. Consequently, the particles whose trajectories they 
represent, have no velocity, as usually defined. Not until the work of Einstein and 
Smoluchowski appeared it was understood that the velocity is not a useful concept in this 
context. 
 
Albert Einstein (1879 – 1955), born in Ulm, Germany, is certainly the best known 
physicist of the twentieth century, perhaps even of all time. In the year 1905 he published 
four papers that at once raised him to the rank of a physicist of highest calibre: the photon 
hypothesis to explain the photo effect (for which he received the Nobel prize in physics 
in 1922 for the year 1921), his first paper on Brownian motion, and his two first papers 
on relativity theory. At that time Einstein was employed at the 'Eidgenössisches Amt für 
Geistiges Eigentum' in Bern, Switzerland. He did not receive the doctoral degree until the 
following year 1906. Interestingly, his thesis was on none of the above problems, but 
concerned the determination of the dimensions of molecules. His first paper on Brownian 
motion was entitled: 'Die von der molekularkinetischen Theorie der Wärme geforderte 
Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen' [20]. A second paper 
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was entitled 'Zur Theorie der Brownschen Bewegung' [21]. Einstein published two 
additional short papers on this topics [22, 23], but these were of relatively minor interest. 
Einstein was the first to understand, contrary to many scientists of his time, that the basic 
quantity is not the velocity but the mean-square displacement of particles. It is perhaps 
interesting to note that both seminal papers on diffusion were printed in Leipzig, 
Germany, in famous journals – Einstein’s paper in the ‘Annalen der Physik’ in 1905 and 
Fick’s paper in the ‘Annalen der Physik and Chemie’ in 1855. 
 

Einstein derived in a first step a relation between 
the diffusivity of particles suspended in a liquid 
and the solvent viscosity η . By extending the 
Stokes friction force, rπη6 , to solute 
molecules of radius r  he obtained 
 

rN
TR

D
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g

πη6
1

= . (8) 

 

gR denotes the gas constant and AN  the 
Avogadro number. This relation is nowadays 
denoted as Stokes-Einstein relation. In a second 
step Einstein considered the positions of a 
particle at small time intervals. The total 
displacement R of each particle during time 
t consists of many individual displacements ir : 

 

∑= irR   (9) 
 
Considering an ensemble of particles and assuming that their displacements obey a 
symmetrical distribution function (no drift), Einstein derived an equation for the 
distribution of particles that has just the form of Fick’s second law, with the diffusivity 
defined on a microscopic basis. In this way he related the mean-square displacement 

〉〈 2R  to the diffusion coefficient and time. In three dimensions we can write 
 

DtR 62 =〉〈 . (10) 
 
Equation (10) is denoted as Einstein relation or as Einstein-Smoluchowski relation. 
Smoluchowski published shortly after Einstein a theory of Brownian motion based on a 
kinetic approach of collisions between particles – quite different from Einstein’s 
thermodynamic approach. 
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The Polish physicist and mountaineer Marian von 
Smoluchowski (1872 – 1917) was born in Vienna, Austria. 
During his lifetime, Poland was not an independent country; 
it was partitioned between Russia, Prussia, and Austria. 
Smoluchowski's father was a lawyer in Cracow, in the 
Austrian part of Poland. Marian von Smoluchowski entered 
the University of Vienna and studied physics under Josef 
Stefan and Franz Exner. He also attended lectures of Ludwig 
Boltzmann. In his later life he was called 'der geistige 
Nachfolger Boltzmanns' (the intellectual successor of 
Boltzmann). He received his PhD and his 'venia legendi' in 
Vienna and was appointed as full professor at Lvov (now 
Ukraine) in 1903 and at the Jagellonian University in 
Cracow in 1913. Smoluchowski also served as president of 
the Polish Tatra Society and was awarded as a distinguished 
alpinist ('Silbernes Edelweiss') by the German and Austrian 
Alpine Society 
 

Smoluchowski's interest for molecular statistics led him already around 1900 to consider 
Brownian motion. He did publish his results not before 1906 [24, 25] under the impetus 
of Einstein's first paper. Smoluchowski later studied Brownian motion for particles under 
the influence of an external force [26, 27]. Einstein's and Smoluchowski's scientific paths 
crossed again, when both considered the theory of the scattering of light near the critical 
state of a fluid, the critical opalescence. Smoluchowski died as a result of a diphtheria 
epidemic, aggravated by wartime conditions in 1917. At that time he was rector of the 
University. Einstein wrote a sympathetic obituary for him with special reference to 
Smoluchowski's interest in fluctuations [28]. 
 
The idea that matter was made up of atoms was already postulated by Demokrit of 
Abdeira, an ancient Greek philosopher, who lived about four hundred years before Christ. 
However, an experimental prove had to wait for more than two millennia. The concept of 
atoms and molecules took strong hold of the scientific community since the time of the 
British chemist and teacher John Dalton (1766 – 1844). It was also shown that the ideas 
of Dalton and of the Italian physico-chemist Amadeo Avogadro (1776 – 1856) could be 
used to construct a rational table of atomic weights, a central idea of chemistry and 
physics. Most scientists were willing to accept atoms as real, since the facts of chemistry 
and the kinetic theory of gases provided strong indirect evidence. Yet there were famous 
sceptics. Perhaps the most prominent ones were the German physical chemist and Nobel 
laureate Wilhelm Ostwald (1853 – 1932) and the Austrian physicist Ernst Mach (1938 – 
1916). They agreed that atomic theory was a useful way of summarising experience. 
However, the lack of direct experimental verification led them to maintain their sceptics 
against atomic theory with great vigour. 
 
The Einstein-Smoluchowski theory of Brownian motion provided ammunition for the 
atomists. This theory explains the incessant motion of small particles by fluctuations, 
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which seems to violate the second law of thermodynamics. The question remained, what 
fluctuates? Clearly, fluctuations can be explained on the basis of atoms that collide with a 
Brownian particle and push it around. The key question was then, what is the 
experimental evidence that the Einstein-Smoluchowski theory is quantitatively correct?  
 
The answer came from the experiments of the French physicist Jean Baptiste Perrin 
(1870 – 1942), a convinced atomist. In order to study the dependence of the mean-square 
displacement on the particle radius, it was necessary to prepare monodisperse 
suspensions. For the check of the Einstein-Smoluchowski relation he and his students 
observed the motion of particles under the microscope and marked their positions at 
given time intervals. If one would plot the particle positions at shorter time intervals, each 
linear segment of the trajectory takes a polygonal shape similar to the whole trajectory. 
This is a description of a fractal line, decades before Mandelbrot’s work [19]. The 
experiments of Perrin showed excellent agreement with the Einstein-Smoluchowski 
theory [29, 30]. He and his students continued refining the work and Perrin published a 
long paper in 1909 on his own and his students' researches [31]. He became an energetic 
advocate for the reality of atoms and received the Nobel prize in physics 1926 '... for his 
work on the discontinuous structure of matter ...'. 
 

2.6 Interdiffusion – Boltzmann and Matano  
An early criticism of Fick’s laws was related to the 
inherent assumption that the diffusivity was considered 
to be independent of concentration and its gradient. 
Nowadays, numerous situations are known, where these 
assumptions are not valid. Nevertheless, one usually 
prefers to keep Fick’s laws in its original form and 
instead admit for a variable diffusivity )(CD . Then the 
diffusion equation (4) has to be replaced by  
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Mathematically, equation (11) is a partial differential 

equation of second order but nonlinear. The second term on the right-hand side can be 
considered as an ‘internal driving force’. For an arbitrary concentration dependence of 

)(CD  it is usually not possible to give an analytical solution of equation (11). 
 
Ludwig Boltzmann (1844 – 1906) made a significant contribution to the mathematics of 
diffusion in the case of compostion-dependent diffusion coefficients. This contribution is 
documented in his paper of 1894 with the title ‘Zur Integration der Diffusionsgleichung 
mit variablem Diffusionskoeffizienten’ [32]. Boltzmann is a well-known hero of classical 
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physics with important contributions to statistical thermodynamics. He was a convinced 
atomist and developed the statistical interpretation of the entropy. Expressions such as 
Boltzmann constant, Boltzmann factor, and Boltzmann contribution remind us to his 
great merits in statistical physics. However, Boltzmann had further widespread interests, 
which included fluid dynamics, evolution theory, biophysics and diffusion. 
 
Boltzmann suggested what we nowadays call the Boltzmann transformation of equation 
(11) by introducing a new variable  
 

t
x

2
=η . (12a) 

 
Applying this transformation, Fick’s second law becomes an ordinary,  nonlinear 
differential equation of second order: 
 

])([2
ηηη

η
d
dCCD

d
d

d
dC

=− . (12b) 

 
Together with the initial condition for a diffusion couple ( LCC =  for 0,  0x t< =  and 

RCC =  for 0,  0x t> = ), suggested by the Japanese physicist Matano [33], the 
transformed diffusion equation provides a convenient way to deduce the diffusion 
coefficient for each composition *C  in the diffusion zone of a composition-depth 
profile. The as-deduced diffusivity is called the interdiffusion coefficient and is obtained 
from 
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Mx denotes the position of so-called Matano plane. It can be determined for a given 
diffusion profile from the following balancing condition of two integrals 
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MC denotes the concentration at the Matano plane. The Boltzmann-Matano method 
based on equations (13) and (14) permits the determination of a composition-dependent 
diffusion coefficient *)(CD from an experimentally determined interdiffusion profile. 



 

 
Boltzmann was born in Linz, Austria, and studied 
physics and mathematics at the universities of 
Vienna, Austria, Heidelberg and Berlin in 
Germany. He received his PhD in 1866 in Vienna 
and was for two years assistant to his highly 
esteemed teacher Josef Stefan. At the age of 25 he 
became professor of mathematical physics at the 
University of Graz, Austria. In the following 
years he occupied positions in Vienna and 
Munich and returned to Graz again, where he 
spent his scientifically most fruitful time. From 
1894 until his death he was successor of Josef 
Stefan at the University of Vienna. 
 
Chujiro Matano (1905 – 1947) graduated 1929 in 
physics from Kyoto University, Japan, and 
worked afterwards until 1935 as research 
associate at Osaka University. From 1935 to 1944 
he was a member of the Muto Research Institute 
of Kanekabuchi Boseki Co. Ltd., a big Japanese 
cotton spinning company. He wrote a textbook on 
topics of cotton spinning with the title ‘Physics of 
Fibers’. From 1944 until his death in 1947 he was 
a professor at the Kyushu University, Japan. 
 
A modern experimental tool for the study of 
interdiffusion profiles – electron-probe 
microanalysis – was developed by the French 
physicist R. Castaing (1921 – 1998). A fine 
focused beam of electrons excites characteristic 
X-rays and permits a chemical analysis on a 
micrometer scale. Castaing demonstrated the 
power of this technique by investigating diffusion 
profiles deduced from linear scans of the electron 
beam through the diffusion zone of the 
multiphase diffusion couple of Cu and Zn [34]. 
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2.7 Georg Karl von Hevesy – first measurements of self-diffusion using 
radioisotopes 
A very important step in experimental diffusion studies was the measurement of self-
diffusion – the most basic diffusion process. The idea of self-diffusion was already 
introduced by Maxwell, when treating the rate of diffusion of gases. The first attempts to 
measure self-diffusion in condensed matter were those of the physico-chemist Georg 
Karl von Hevesy (1885 – 1966), who studied self-diffusion in liquid [35] and in solid lead 
[36] by using a natural radioactive isotope (210Pb also called Radium D, 212Pb also called 
Thorium B) of lead.  
 
Von Hevesy had a fascinating scientific career. He was born in Budapest, Hungary (at 
that time part of the Austro-Hungarian monarchy), and studied at the universities of 
Budapest, Berlin and Freiburg. He did research work in physical chemistry at the ETH in 
Zürich, with Fritz Haber in Karlsruhe, with Ernest Rutherford in Manchester, and with 
Fritz Paneth in Vienna. He became professor in Budapest in 1919 and from 1920 to 1926 
he worked with Niels Bohr in Copenhagen, Denmark. Together with the Dutch physicist 
Dirk Coster he discovered the new element 'hafnium'. He was professor in Freiburg, 
Germany, from 1926 to 1934. During his eight years in Freiburg he initiated work with 
radiotracers in solids and in animal tissues. Fleeing from the Nazis in Germany he moved 
to the Niels Bohr institute in Copenhagen in 1934 and from there to Stockholm. In 1944 
the Swedish Royal Academy of Sciences awarded him the Nobel prize in Chemistry of 
the year 1943 for '... his work on the use of isotopes as tracers in the study of chemical 
processes.' He became a Swedish citizen and was appointed professor of organic 
chemistry in Stockholm in 1959. Von Hevesy, who married Pia Riis, daughter of a 
Danish ship owner, had four children. He died in Freiburg in 1966. 

 
After the discovery of artificial radioisotopes by Irene 
and Pierre Joliot-Curie in 1934, the development of 
accelerators, and the advancement of neutron activation 
in nuclear reactors due to Enrico Fermi (1901 – 1954), 
radioisotopes for many elements became available. The 
period shortly before and during World War II saw first 
measurements of self-diffusion on metallic elements 
other than Pb. 

2.8 Atomic Defects in solids – Frenkel, Schottky and 
Kirkendall 
Solid-state physics was born when Max von Laue (1879 – 
1960) detected diffraction of X-rays on crystals. His 
experiments demonstrated that solid matter usually 
occurs in three-dimensional periodic arrangements of 
atoms. His discovery was awarded with the Nobel prize 
of physics in 1914. However, the ideal crystal of Max 
von Laue is a 'dead' crystal. Solid-state diffusion and 
many other properties require deviations from ideality. In 
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the thirties and fourties of the twentieth century people began to be concerned with an 
atomic scale approach of ion conductivity in ionic crystals and solid-state diffusion in 
general. This led to the concept of atomic defects in solids. 
 
The Russian physicist Jakov Ilich Frenkel (1894 – 1952) introduced the concept of 
disorder in the field of solid-state physics. He suggested that thermal agitation causes 
transitions of atoms from their regular lattice sites into an interstitial position leaving 
behind lattice vacancies [37]. This kind of disorder is now called Frenkel disorder and 
consists of pairs of vacant lattice sites (vacancies) and lattice atoms on interstitial sites of 
the host crystal (self-interstitials). Only a few years later Wagner and Schottky [38] 
generalised the concept of disorder by treating  binary compounds and introducing point-
defect thermodynamics. They considered the occurrence of vacancies, interstititals and 
antisite defects on both sublattices. Nowadays, it is common wisdom that atomic defects 
are necessary to mediate diffusion in crystals. 
 
The German physicist Walter Schottky (1886 -1976) teached at the universities of 
Rostock and Würzburg, Germany, and worked in the research laboratories of the Siemens 
company. He had also a major influence on the development of telecommunication. 
Among Schottky's many achievements a major one was the development of a theory 
which explained the rectifying behaviour of metal-semiconductor contacts and 
revolutionised semiconductor technology. Since 1973 the German Physical Society 
decorates outstanding achievements of young German scientists in solid-state physics by 
the 'Walter-Schottky award'. 
 
The basis of diffusion in solids is the movement of atoms, ions or molecules on a lattice. 
The link between the diffusivity and the mean square displacement, the Einstein – 
Smoluchowski relation, is valid for crystals as well. In crystals the situation is in a sense 
even simpler than in gases and liquids, since the crystal lattice restricts the positions and 
the migration paths of atoms. The individual displacements are jumps with a fixed jump 
length, often nearest-neighbour jumps (see Fig. 4). A certain degree of randomness is due 
to the jump directions. This contrasts with diffusion in a gas, where random 
displacements in length and direction occur. 
 



 

v     
 
A further cornerstone of solid-state diffusion comes from the work of the American 
metallurgist Ernest Kirkendall (1914 – 2005). In the 1940s, it was still a widespread 
belief that atomic diffusion in metals takes place via direct exchange or ring mechanisms. 
This would indicate that the diffusion of components in binary alloys occurs at the same 
rate. 

 
Kirkendall’s experiment is illustrated in Fig. 5. 
Diffusion couples composed of pure Cu and brass – a 
Cu-Zn alloy – were studied. The interface, where the 
couple was initially joined, was marked by thin Mo 
wires as inert markers. The shift of the markers during 
the diffusion anneal is denoted as Kirkendall effect. This 
shift is indicated in Fig. 5 and shows that Zn atoms 
diffused faster outwards than Cu atoms inward. In such 
studies Kirkendall and his coworkers demonstrated the 
inequality of copper and zinc diffusion during 
interdiffusion between brass and copper [39, 40, 41]. 
The Kirkendall effect has been observed in the 
meantime on many other alloys. Kirkendall's discovery, 
which took the scientific world about 10 years to be 
accepted, is taken as evidence for a vacancy mechanism 
of diffusion in metals and alloys. Kirkendall left 
research in 1947 and served for almost thirty years as 
secretary of the American Institute of Mining, 
Metallurgical and Petroleum Engineers. 

 
 
 
 

Fig. 4: Atomic defects 
and their jumps in a 
crystal: vacancy (top 
left), self-interstitial (top 
right), foreign interstitial 
(lower part). 
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2.9 Correlation in solid-state diffusion – John Bardeen, John Manning 
Defects are usually the vehicles of diffusion in a crystalline solid. If diffusion would 
occur by a pure random walk on a lattice, the jump probabilities of atoms would not 
depend on the direction of the preceding jump. It was not until 1951 that Bardeen and 
Herring drew attention to the fact that for the vacancy mechanism, correlation exists 
between the jump directions of consecutive jumps of tagged atoms [42]. The American 
physicist John Bardeen (1908 – 1091) was one of the few scientists, who received the 
Nobel prize in physics twice. Together with Shockley and Brattain, he was awarded for 
the development of the transistor in 1956. Bardeen, Cooper and Schrieffer received the 
1972 prize for the BCS theory of superconductivity. 

 
Bardeen and Herring pointed out that correlation is 
important: after the site exchange of a tagged atom 
(tracer) with a neighbouring vacant lattice site (see Fig. 
4) the vacancy appears on the position left by the tagged 
atom. After this site exchange the tracer-vacancy 
configuration is no longer random but depends on the 
direction of the first exchange. This non-randomness can 
be accounted for by introducing a correlation factor. We 
remind the reader to the Einstein-Smoluchowski relation, 
which connects the mean square displacement of a serie 
of n individual jumps to the diffusion coefficient: 
 

Fig. 5: Schematic 
illustration of the 
Kirkendall effect for 
a copper – brass 
diffusion couple. 
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The single sum in front of the brackets corresponds to the mean square displacement for a 
completely random series of individual jumps. The term in brackets with the double sum 
includes correlations. With the abbreviations 
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the mean square displacement can be written as 
 

fRR random 〉〈=〉〈 22    or   fndR 22 =〉〈 . (17) 
 
The second equation (17) holds for a coordination lattice with nearest neighbour distance 
d . f is the correlation factor introduced by Bardeen and Herring. For a true random 
walk the double sum vanishes and the correlation factor is unity. Correlation arises from 
the double sum, which reduces the correlation factor to a value 1<f . 
 
Correlation effects are important in solid-state diffusion, whenever diffusion is mediated 
by defects that act as diffusion vehicles. Examples for diffusion vehicles are vacancies, 
divacancies, self-interstitials, etc. An equivalent statement is to say, there must at least 
three identifiable ‘species’ be involved in the elementary jump process. For example, 
tracer diffusion via vacancies involves vacancies, host atoms and tracer atoms. Interstitial 
diffusion in a dilute interstitial alloy is uncorrelated, because only host atoms and 
interstitial solutes but no diffusion vehicle is involved. 
 
Self-diffusion is the most basic diffusion process in a solid. In metals it is mediated by 
vacancies, which jump to nearest-neighbour sites in the lattice (distance d ). Self-
diffusion is studied conveniently by tracer techniques, which were used for the first time 
by von Hevesy and coworkers. The tracer diffusion coefficient contains a correlation 
factor. For a cubic Bravais lattice the tracer self-diffusion coefficient can be written as 
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Z  denotes the coordination number and tn  is the atomic jump rate, which for a 
vacancy mechanism can be expressed in terms of vacancy site fractions and exchange 
rate between tracer atom and vacancy. The second equation contains explicitly the 
exchange rate ω  and the site fraction of vacancies in thermal equilibrium eq

VC . Both 
quantities are thermally activated: 
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Here FFF TSHG −=  denotes the Gibbs energy of vacancy formation, which is 
composed of an enthalpy and entropy term. 0ν is the attempt frequency of the atom–
vacancy jump. This frequency is of the order of the Debye frequency of the lattice. 

MMM TSHG −=  denotes the Gibbs energy of vacancy migration, which again 
contains an enthalpy and entropy term. Taken together, the self-diffusion coefficient can 
be written as 
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Self-diffusion is Arrhenius activated with an activation enthalpy MF

self HHQ += , 

which is composed of the formation and migration enthalpy of the vacancy. 0D is a pre-
exponential factor, which contains geometrical quantities, entropy terms, the attempt 
frequency and the correlation factor. In an Arrhenius diagram the diffusion coefficient is 
plotted on a logarithmic scale versus the reciprocal temperature. Usually, the Arrhenius 
diagram is a straight line, whose slope is determined by the activation enthalpy. Small 
deviations, which are sometimes observed, occur for microstructural and/or intrinsic 
reasons (for details see, e.g., [43, 44]). They are beyond the scope of the present paper 
 
For self-diffusion the correlation factor is often just a number. Its value depends on the 
type of the lattice and on the diffusion mechanism (for examples, see the table below and 
Refs. [43, 44]). The correlation factor lowers the tracer self-diffusivity with respect to a 
(hypothetical) ‘random walk value’. In the case of self-diffusion the correlation factors 
take often values between 0.5 and unity. Nevertheless, for a complete description of the 
atomic diffusion it is necessary to include correlation. 
 
 



 

 Face-centered cubic Body-centered 
cubic  

Diamond structure 
 

Vacancy 
mechanism 

0.7815 0.7272 0.5 

Divacancy 
mechanism 

0.4579 0.337 to 0.469  

 
There are additional good reasons why correlation effects are of interest. The correlation 
factor is quite sensitive to the diffusion mechanism. For example, the correlation factor 
for divacancies is smaller than that for monovacancies in the same lattice (see table). 
Thus an experimental determination of correlation factors can throw considerable light on 
the mechanism(s) of diffusion. The knowledge of the diffusion mechanism is certainly of 
prime importance for the basic understanding of diffusion. Measurements of the so-called 
isotope-effect of diffusion and in some cases measurements of the Haven ratio in ionic 
crystals proved to be very useful in this context. Details are beyond the scope of the 
present paper and can be found, e.g., in textbooks of Philibert [43] and one of the present 
authors [44] 
 
Impurity diffusion (diffusion of substitutional solutes in very dilute solutions) like self-
diffusion is vacancy-mediated. The impurity diffusion coefficient can be written as 
follows: 
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Here impf denotes the impurity correlation factor and impω  is the impurity-vacancy 

exchange jump rate. BBB TSHG −=  indicates the Gibbs energy of binding between 
impurity and vacancy, which can be decomposed into an enthalpy and entropy of 
binding. For 0>BG  the impurity-vacancy interaction is attractive and for 0<BG it is 
repulsive. 
For the face-centred cubic lattice within the framework of Alan Lidiard´s ‘five frequency 
model´ [45] the correlation factor takes the following form: 
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1ω is the vacancy jump rate for vacancy exchange with atoms that are nearest neighbours 

of the impurity; 3ω  is the dissociation jump rate of the vacancy, which removes the 
vacancy from its nearest-neighbour position to the impurity towards one of the seven 
lattice sites that are not nearest neighbours of the impurity. 3F is the so-called escape 



 

probability, which is a function of the ratio of the vacancy jump rate ω  in the pure 
solvent and of the association jump rate 4ω . The pertaining jump brings the vacancy 
towards a nearest-neighbour site of the impurity (association jump). For self-diffusion all 
jump rates are equal and the correlation factor obtained from equation (22) is just the 
number 0.7815 given in the table. If the vacancy-impurity exchange is much slower than 
the vacancy - solvent atom exchanges, i.e. 3 1,  impω ω ω<< , the correlation factor tends 
to unity. If the opposite is true the correlation factor tends to zero. Association and 
dissociation jump rates of the vacancy are related via the detailed balancing condition 
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which includes the Gibbs energy of binding for the impurity – vacancy complex. 
 
In contrast to self-diffusion, the correlation factor of impurity diffusion is no longer just a 
number. It is a function of several jump rates with different barrier heights. Therefore, the 
correlation factor is a quantity that depends on temperature. The temperature dependence 
of the impurity correlation factor can be attributed to an activation enthalpy, which is 
defined via 
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From equation (21) for the impurity diffusion coefficient, it is evident that the activation 
enthalpy for diffusion of substitutional impurities, impQ , can be written as 
 

BFM
impcorrimp HHHCQ −++= . (25) 

 
M
impH  denotes the activation barrier for impurity-vacancy exchange and BF HH − can 

be interpreted as the enthalpy of vacancy formation at a nearest-neighbour site of the 
impurity. Clearly, correlation contributes via corrC  to the temperature dependence of 
impurity diffusion. 
 
Impurity correlation factors for various cubic structures have been calculated in detail by 
the American physicist John Manning (1933 – 2005). Manning had strong interests in the 
‘Diffusion kinetics of atoms in crystals’ as evidenced by the same title of his book [46]. 
He received his PhD from the University of Illinois, Urbana, US. Then he joined the 
metals physics group at the National Bureau of Standards (NBS/NIST) in Washington. 
Later he was the chief of the group until his retirement. He also led the `Diffusion in 



 

Metals Data Center´ together with Dan Butrymowics and Michael Read. The obituary 
published by NIST has the following very rightful statement: ‘His papers have explained 
the significance of the correlation factor and brought about an appreciation of its 
importance in a variety of diffusion phenomena’. The authors of this paper met John 
Manning at several conferences. Manning was a great listener and a strong advocate, fair, 
honest, friendly, courteous, kind and above all a gentleman. 
 

2.10 Grain-Boundary Diffusion 
By 1950, the fact that grain-boundary diffusion 
exists had been well documented by 
autoradiographic images [47], from which the ratio 
of grain-boundary to lattice diffusion coefficients in 
metals was estimated to be several orders of 
magnitude [48]. Fisher published his now classic 
paper presenting the first theoretical model of grain-
boundary diffusion based on Fick’s laws in 1951 
[49]. In Fisher’s model the grain boundary is 
represented as a slab with high diffusivity embedded 
into two crystal grains with lower diffusivity. 
 
At about the same time the metallurgy group at the 
General Electric Research Laboratories investigated 
under the guidance of the American materials 
scientist David Turnbull (1915 – 2007) self-
diffusion of radioactive silver in poly- and 

monocrystals of silver [50]. That pioneering paper together with Fisher’s theoretical 
approach initiated the field of quantitative studies of grain-boundary diffusion in solids. 

 
Nowadays, grain-boundary diffusion is well recognized 
to be a transport phenomenon of great fundamental 
interest and of technical importance in polycrystals and 
particularly in nanocrystalline materials. Diffusion along 
grain boundaries often controls the evolution of the 
microstructure and the properties of materials at elevated 
temperatures. In Coble creep, sintering, diffusion-
induced grain-boundary motion, discontinuous 
precipitation, recrystallisation and grain growth, 
diffusion along grain boundaries plays a prominent role. 
Grain-boundary diffusion is important in thin-film 
interconnects and in various kinds of thin-film multilayer 
devices. For a broad overview of fundamental aspects 
and more recent developments the reader may consult a 
textbook on grain-boundary diffusion by Kaur, Mishin 
and Gust [51]. 

The American physicist John 
Randolf Manning (1933 – 2005) 

The American metallurgist 
David Turnbull (1915 – 2007) 



 

3. Concluding Remarks  
The equations of Fick, the statistical interpretation of the diffusion coefficient by Einstein 
and Smoluchowski and the Boltzmann-Matano method for concentration-dependent 
diffusion coefficients provided a theoretical framework for diffusion studies and also 
opened the way for new experimental techniques. The first period of solid-state diffusion 
experiments under the influence of the seminal papers of Roberts-Austen and von Hevesy 
was followed by a period which started when 'artificial' radioactive isotopes, produced in 
accelerators, became available. After World War II nuclear reactors provided additional 
sources for radioisotopes. This period saw first measurements of self-diffusion on 
elements other than lead. Examples are self-diffusion of gold [52, 53], copper [54], silver 
[55], zinc [56], and iron [57]. In all these experiments the temperature dependence of 
diffusion was adequately described by the Arrhenius law, which by about 1950, had 
become an accepted 'law of nature'.  
 

 
 
Many of the precise diffusion studies in recent decades were performed by the radiotracer 
technique [13]. We illustrate the power of this method just by one example. Due to the 
high sensitivity of nuclear counting facilities, radiotracer studies are often superior to 
other techniques. A very important advantage is that self-diffusion – the most basic 
diffusion process in a solid – can be studied by using a radioisotope of an element which 
is a constituent of that solid. As an example, Fig. 6 shows the concentration-depth profile 
of the radioisotope 59Fe in a sample of the intermetallic alloy Fe3Si. The reader may note 
that the experimental data follow the thin-film solution of Fick’s second law (Eq. (6)) 
over almost five orders of magnitude. From experimental data of this quality, diffusion 
coefficients can be determined with an accuracy of a few percent. 

Fig. 6: Example of a concentration-
depth profile of 59Fe in Fe3Si according 
to [58, 44]. Diffusion annealing was 
performed at 1198 K for 1640 s. The 
solid line represents a fit of the thin-film 
solution of Fick’s second law to the 
data. 



 

 

 
 
 
Self-diffusion in many elements has been studied over wide temperature ranges using 
radiotracer methods. As an example Fig. 7 shows an Arrhenius diagram of self-diffusion 
in monocrystalline nickel studied with the radioisotope 63Ni. For depth profiling both 
mechanical and sputter techniques were applied (see [44] for details). The reader may 
note that the data cover more than nine orders of magnitude in the diffusion coefficient. 
 
A review of the more recent development of diffusion science is beyond the scope of this 
paper, since the field has grown explosively. This period is characterised by the extensive 
use of radioisotopes, the study of the dependence of diffusion on the tracer mass (isotope 
effect) and of diffusion under hydrostatic pressure. Great improvements in the precision 
of diffusion measurements and in the accessible temperature ranges were achieved by 
using refined profiling techniques such as sputter sectioning [59, 60], secondary ion mass 
spectroscopy (SIMS), Rutherford back-scattering (RBS), and nuclear reaction analysis 
(NRA) (see [44] for details). Methods not directly based on Fick's law to study atomic 
motion such as the anelastic or magnetic after-effect, internal friction, and impedance 
spectroscopy for ion-conducting materials were developed and widely applied. 
Completely new approaches making use of nuclear methods such as nuclear magnetic 
relaxation (NMR) applied first by Bloembergen, Purcell and Pound [61], Mössbauer 
spectroscopy (MBS) detected by the German Nobel laureate Mössbauer [62], and quasi-
elastic neutron scattering (QENS) were successfully applied to diffusion problems.  
 

Fig. 7: Diffusion of the radioisotope 63Ni in monocrystals of nickel according to [44]. 



 

Up-to-date reviews for the application of nuclear methods to diffusion studies have been 
given, e.g., by Heitjans, Schirmer and Indris for NMR [63], by Mullen and by Vogl and 
Sepiol for MBS [64, 65], by Zabel and by Springer and Lechner for QENS [66, 67]. The 
main virtue of MBS and QENS is that these methods are sensitive to the elementary 
diffusion steps on a microscopic scale. A direct determination of length and direction of 
the diffusion jump is possible, when single crystals are used. In addition, the diffusion 
coefficient can be deduced and compared with tracer data. Both techniques are limited to 
relatively high diffusion coefficients, i.e to temperatures near the melting temperature: 
Only systems with a suitable Mössbauer isotope or a large enough incoherent cross 
section for neutrons can be studied by MBS or QENS (see [44] for details).  
 
The past decades have also seen a tremendous increase in the application of computer 
modelling and simulation methods to diffusion processes in materials. Along with 
continuum modelling aimed at describing complex diffusion problems by differential 
equations, atomic-level modelling by a variety of methods, such as ab-initio calculations, 
molecular dynamics studies, and Monte Carlo simulations, plays an increasingly 
important role as means of gaining fundamental insights into diffusion processes. Among 
a group of pioneers, Graeme Murch from the University of Newcastle in Australia is an 
outstanding person in this area that is now known as computational materials science. He 
initiated the use of Monte Carlo methods for calculating diffusion kinetics of solids, 
especially tracer correlation effects. He developed together with Irina Belova a number of 
Monte Carlo-based simulation techniques to address an extremely wide range of complex 
diffusion kinetic problems documented in a large number of papers. It is beyond the 
scope of our paper to list these all. We just mention a recent review provided by these 
authors [76]. 
 
It may be also interesting to note that diffusion has a fairly long tradition at the authors’ 
University of Münster. Wolfgang Seith (1900 – 1955), who collaborated with von Hevesy 
in Freiburg, was appointed in 1937 as professor of physical chemistry. Seith established 
diffusion as scientific topic in Münster and authored a first book on ‘Diffusion in 
Metallen’ in 1939 [68]. The second edition of this book appeared in 1956 and was co-
authored by Theodor Heumann (1914 – 2002) [18], who was then associated with Seith. 
Later Theodor Heumann occupied a chair in physics in Münster. He introduced together 
with his associate Christian Herzig the radiotracer technique in the Münster diffusion 
laboratory, which had not been possible during Seith’s time due to aggravated war and 
post-war conditions. Heumann published a new book on ‘Diffusion in Metallen’ in 1992 
[19]. One of the present authors (H.M.) succeeded Heumann on the chair in 1984 and 
retired 2005. During H.M.’s period diffusion was one of the major research topics of the 
group. Diffusion has been studied in many kinds of solids including metals, 
intermetallics, metallic glasses, elemental and compound semiconductors, ion-conducting 
oxide glasses and polymers. Lattice as well as grain-boundary diffusion has been studied 
using radiotracer techniques. Interdiffusion and multiphase diffusion was investigated by 
electron microprobe analysis using the Boltzmann-Matano analysis. Monte Carlo 
techniques were applied to diffusion problems and diffusion-related phenomena were 
considered as well. One of the authors (H.M.) has edited a collection of diffusion data 



 

‘Diffusion in Solid Metals and Alloys’ [13] and published a new textbook with the title 
‘Diffusion in Solids – Fundamentals, Methods, Materials, Diffusion-controlled 
Processes’, which appeared in 2007 [44]. 
 
We end this paper by drawing the readers´ attention to some additional literature on the 
history of diffusion. An essay on the early history of diffusion with the title ‘The origin of 
quantitative diffusion measurements in solids. A centenary view' was given by L.W. Barr 
[11]. At a conference on the occasion of the 150th anniversary of Fick’s publications and 
the 100th anniversary of Einstein’s paper on Brownian motion, Jean Philibert presented a 
very informative article on 'One and a Half Century of Diffusion: Fick, Einstein, before 
and beyond' [9]. Readers interested in the history of diffusion mechanisms in the solid-
state will benefit from C. Tuijn’s article on the 'History of models for solid-state diffusion' 
[71]. Remarks about the more recent history can be found in papers of Steven Rothman 
[72], M. Koiwa [73], Alfred Seeger [74], and one of the present authors [44, 75] 
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