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Abstract 

 
 A simplified mathematical model is proposed to provide an analytic solution for the 
transient behavior of a Langmuirian zeolite membrane subjected to a step increase in sorbate 
pressure at the upstream surface at time zero.  The concentration profiles derived from the 
simplified model agree with those calculated by numerical solution of the governing partial 
differential equation.  The model is used to investigate the validity of the classical time-delay 
method of measuring diffusion in the adsorbed phase. Under non-linear conditions the time delay 
depends on the degree of non-linearity as well as on the diffusional time constant.  Under highly 
non-linear conditions application of the classical linear model yields apparent diffusivity values 
that are about four times larger than the limiting value (Do). 
 The new model is used to reanalyze experimental permeation diffusivity data for p-
xylene in a single crystal zeolite membrane.  The resulting Do values are shown to be consistent 
with the values determined by other experimental techniques. 
 
 The transient behavior of a membrane, subjected to a step change in the sorbate partial 
pressure on the upstream side is a classic problem in diffusion theory (1), and provides the basis 
for a well established experimental technique for measuring the diffusion coefficient (2).  The 
existing theory is, however, limited to linear systems with a constant diffusivity.  These 
conditions are often reasonably closely fulfilled for the diffusion of light gases in polymeric 
membranes but for heavier species and especially for zeolite membranes in which the 
equilibrium isotherm is generally non-linear, the assumption of a linear system with constant 
diffusivity is clearly invalid.  Nevertheless the linear theory has frequently been applied to such 
systems (3-5).  It therefore seems important to re-visit the basic analysis of membrane behavior 
under transient conditions in order to develop a more appropriate model for non-linear systems. 
 
Linear Systems 
 
 In order to understand the behavior of non-linear systems it is helpful first to review 
briefly the classical linear theory.  We consider a membrane of thickness (ℓ) subjected at time 
zero to a step increase in the sorbate concentration (adsorbed, absorbed or dissolved) to c1 at the 
upstream face while the permeate face is maintained at a very low sorbate concentration 
(essentially zero) either by pulling a vacuum or by purging at a sufficiently high rate with an 
inert sweep gas.  For a constant diffusivity system the behavior is described by Fick’s second 
equation: 
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with the initial and boundary conditions: 
 
 t = o: o > x >  ℓ,    c = f (x)  
 t > o:    x = o,  c = c1       (2) 
  x = ℓ,  c = o 
 
The solution is given by (1): 
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When the initial loading is zero (f(X) = 0), I(n) = 0 and the final term of Eq. 3 vanishes.  In the 
usual experimental system the initial loading is zero and the total quantity of sorbate passing 

through the membrane  is measured as a function of time. ⎥
⎦

⎤
⎢
⎣

⎡
= ∫

t

JdtQ
0

 
From Eq. 3: 
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whence: 
 

 ( )∑∫
∞

=

−

==

−
−−=⎥⎦

⎤
⎢⎣
⎡

∂
∂

−=
1

22
1

101

22

1

12
6
1

n

nn

X
n
ed.

X
C

c
Q τπτ

τ π
ττ    (5) 

 
At long times this reduces to: 
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and eventually to the steady state: 
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 Measurement of the time delay (td) by extrapolation of this asymptote thus yields directly 
the diffusional time constant since: 
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The advantage of this approach is that knowledge of the solubility (or the Henry constant) is not 
required.  Under steady state conditions: 
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Thus, if both the upstream pressure (p1) and the membrane thickness are known, both the 
diffusivity and the Henry constant can be determined from the same experiment. 
 
 The form of the transient profiles and the flow through the membrane, calculated from 
Eqs. 3 and 5, are shown in figure 1.  At short times such that the distance penetrated by the 
concentration front is less than the membrane thickness the system is equivalent to diffusion into 
a semi-infinite medium.  The transient concentration profile is then given by: 
 
 C = erfc(y)         (10) 
 
where τ22 /XDt/xy == .  At the breakthrough time (τ0 ≈ 0.0625) the profiles calculated 
from Eqs. 3 and 10 are  identical, as may be seen from figure 1(a). 
 
Non-Linear Systems 
 
Steady State 
 
 The assumption of a constant (concentration independent) diffusivity is inappropriate for 
non-linear systems.  The flux is determined by the gradient of chemical potential, rather than by 
the concentration gradient, 
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If the equilibrium relationship is of Langmuir form: 
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Transient Concentration Profiles (Linear System)
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Fig. 1 (a) Transient concentration profiles through the membrane for a linear 
system showing the approach to steady state and the comparison between the 
penetration solution (Eq. 10) and the exact solution (Eq. 3). 

 (b) Flow through the membrane (Q/ℓc1) as a function of time showing the 
approach to the steady state.  Breakthrough and delay times are indicated. 
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Eq. 11 reduces to: 
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Integrating across the membrane (from x = 0 ,  c = c1) yields: 
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where θ = c/cs  = (c/c1)θ1 = Cθ1 and, at the permeate side (x = ℓ,  θ = 0): 
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The steady state concentration profile through the membrane is therefore given by: 
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with the slope: 
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The flow through the membrane under steady state conditions is determined by the concentration 
gradient at the permeate face and is given by: 
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Comparison with Eq. 9 shows that for a Langmuirian system the steady state flow (i.e. the 
limiting slope of a plot of Q/ℓc1 vs τ) is increased by the factor -ℓn (1- θ1) / θ1 relative to the 
linear case.  The apparent diffusivity derived from such a plot will therefore be increased by this 
same factor. 
 
Transient Behavior
 
 The Langmuirian system is formally equivalent to a Fickian system in which the 
diffusivity varies with sorbate concentration in accordance with: 
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The transient behavior is described by the partial differential equation: 
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An analytic solution to this equation for the boundary conditions appropriate for diffusion into a 
semi-infinite medium (Eq. 2 with the final boundary condition replaced by x → ∞,  c →0) has 
been obtained by Fujita (6) and this solution has been summarized by Crank (1).  However, 
Fujita’s approach, which uses the Boltzmann transformation ( )Dt/xy 2= , cannot be extended 
to the spatially finite boundary conditions appropriate for a membrane of finite thickness (Eq. 2), 
although the problem can of course be solved numerically for any specified values of the 
parameters Do,  θ1 and ℓ.  A more insightful analytic approximation to the solution can however 
be obtained by recognizing that Fujita’s solution is applicable exactly to the finite membrane up 
to the breakthrough time, and, if the concentration at the permeate side is maintained close to 
zero (as in the usual experimental system), the subsequent response, which depends on the 
concentration gradient at the permeate face, will be amenable to a simple linear analysis; 
 
 The steady state concentration profile through the membrane is given by Eq. 17 and the 
limiting slope (at the permeate face) is therefore given by: 
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For a linear system at steady state this slope is constant through the membrane so we consider a 
section of the membrane (at the permeate side) of thickness ℓ1 such that: 
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We consider distance (x1) measured from the point x = ℓ - ℓ1 (i.e. X1=x1/ℓ1) and time (τ1=D0 
τ1/ℓ12) measured from the breakthrough time (τ0).  At this time the spatial profile C=f(x1, τ1, θ1) 
which corresponds to the initial profile in the region 0<X1<1 is given by Fujita’s solution.  The 
variation of breakthrough time with θ1 from Fujita’s solution, is shown in figure 2.  Provided that 
the boundary condition at x1 = 0 is consistent with the final steady state profile its precise form 
has only a minor effect on the transient response at the permeate face (x = ℓ, x1 = ℓ1).  We 
therefore consider the region 0<X1<1 as equivalent to a linear system in which the response is 
given by Eq. 3 (with X and τ replaced by X1 and τ1) subject to the boundary conditions: 
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where f(X1) represents the concentration profile at breakthrough over the region (ℓ-ℓ1)/ℓ < X < 
1.0 from Fujita’s solution. 
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 t >0:  X1 = 0,  c = c1 

  X1 = 1,  c = 0 
 

The solution to this problem therefore reduces to calculating the integral I(n) for Fujita’s 
solution.  In principle this integral can be calculated from the analytic expression provided (see 
the appendix) but the formal solution is complicated and it is easier to approximate the profile by 
a simple algebraic form.  The obvious choice is a negative exponential ( ) for 
which: 
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With this approximation the expression for the concentration profile (within the region 
0<X1<1.0) and the flow through the membrane (at X=X1=1.0) are given by: 
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The time delay (defined by the intercept of the long time asymptote) is given by: 
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The overall time delay is given by: 
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where 0τ  (from Fujita’s solution) is obtained from figure 2 and  from Eq. 28.  the variation of 1

dτ

dτ  with 1θ  is almost linear as shown in figure 2. 
 
 The development of the concentration profile (for 1θ  = 0.8) is shown in figure 3.  The 
profiles calculated by numerical solution of Eq. 20 lie very close to those that would be obtained 
by interpolation between the Fujita solution (for a semi-infinite medium) and the linear model 
(for the region 0<X1<1.0,  0.503 < X <1.0) thus confirming the validity of the approximate 
model. 
 
 

Variation of Time Delays with Loading
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Fig. 2 Variation of breakthrough time (τ0) with θ1.  Values of τ0 are calculated from 

Fujita’s solution taking C=0.001 as the breakpoint.  Values of τd are calculated 
from Eqs. 28 and 29. 
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Transient Concentration Profiles  (θ1 = 0.8)
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Fig. 3. Development of concentration profile C(X, τ) for θ1 = 0.8. 
    

(1) Breakthrough profile (τ0 = 0.04) showing comparison between Fujita’s 
solution (♦) and the numerical solution derived from Eq. 20 (���).  
(2, 3) Profiles calculated numerically from Eq. 20 for τ = 0.08 and 0.12 (���).  
Also shown are the limiting profiles for these values of τ calculated from the 
simplified model (▲, ■) and the profile from Fujita’s solution (o). 
(4) Steady state profile calculated from Eq. 16. 

 
Figure 4 shows the transient behavior as a plot of Q/ℓc1 vs τ calculated from Eq. 27 for various 
values of 1θ .  With increasing non-linearity the asymptotic slope increases in accordance with 
Eq. 18 while the time intercept (the “time delay”) decreases in accordance with Eq. 29.  As in the 
linear case the intrinsic diffusivity (D0) may be determined either from the time delay or from the 
limiting slope of the asymptote, provided that the upstream loading (c1 or θ1) is known.  The 
directly measured quantities are: 
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Flow Through Membrane and Time Delay
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Fig. 4 Variation of flow through membrane (Q/ℓc1) with time (τ) for different values of 

θ1 showing the approach to the steady state asymptote defined by Eq. 30 
 
so it is evident that, both the value of Do and the membrane thickness (ℓ) can be determined.  
Since the thickness of a zeolite membrane is often not amenable to direct measurement this is 
clearly advantageous.  For a linear system the slope and time delay are given respectively by 
Eqs. 9 and 8 so the ratios of slopes and time delays for Langmuirian and linear systems, which 
correspond to the ratios (Dapp/D0), are given by: 
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These ratios are plotted as a function of θ1 in figure 5.  For a given value of θ1 the slope and 
intercept ratios are similar (although not exactly equal) and converge at low and high loadings.  
Coincidence between the diffusivity values derived from the slope and intercept has been 
regarded as justification for the use of the simple linear model.  However, the above analysis 
shows clearly that approximate coincidence (within experimental error) is to be expected 
between slope and intercept values even for highly non-linear systems. 
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Correction Factors 
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Fig. 5 Variation of correction factors (Dapp/D0) with θ1 for slope and intercept values of 

diffusivity (Eqs. 31 and 32) 
 
 The limiting behavior as θ1 → 1.0 is of interest since this defines the behavior of a system 
with a highly favorable (rectangular) isotherm.  It appears that in this limit τd approaches a finite 
value of about 0.04 (see figure 2).  If this is true then the intercept ratio, defined by Eq. 31 will 
reach a maximum value of about 4.2 at θ1 = 1.0 while the slope ratio will continue to increase 
indefinitely, approaching the limit θ1 = 1.0 asymptotically.  This implies that, for highly 
favorable isotherms, the apparent diffusivity calculated from the slope will be substantially 
greater than that derived from the time delay.  Such behavior has been observed experimentally 
in the work of Shah and Liou (4).  However, the validity of the simplified theoretical model 
becomes questionable in this limit and, as a result of the very strong concentration dependence of 
the diffusivity, numerical calculations also become inaccurate in this region so the possibility 
that the experimental confirmation of this behavior is fortuitous cannot be excluded. 
 
Analysis of Experimental Data 
 
 Shah and Liou (4) have presented an extensive set of permeation/diffusion measurements 
for aromatic hydrocarbons in a single crystal silicalite membraneoriented along the long (z) axis 
(ℓ = 100μm).  The measurements were made mainly at 298K at pressures ranging from 0.5 to 10 
Torr.  Under these conditions the equilibrium isotherms are highly non-linear, especially for p-
xylene for which θ1 > 0.98, yet the permeation data were interpreted in accordance with the 
classical linear model to yield apparent integral diffusivities.  Intrinsic diffusivities were not 
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Table 1 
Variation of Breakthrough Time and Time Delay 

 
 

Θ1 ℓ1/ℓ c0/c1 τ0 τ1
d τd 1/6τd (Dapp/D0)slope

        
Linear 
(θ1=0) 

1.0 - 0.063 0.104 0.167 1.0 1.0 

0.5 0.722 - 0.051 0.107 0.107 1.56 1.38 
0.8 0.497 0.21 0.04 0.115 0.068 2.44 2.01 
0.9 0.39 0.15 0.036 0.132 0.056 3.0 2.55 
0.95 0.317  0.13 0.033 0.135 0.047 3.5 3.15 
0.98 0.26 0.095 0.032 0.143 0.042 4.05 4.0 
0.99 0.215 0.025 0.032 0.161 0.04 4.2 4.65 

 
ℓ1/ℓ is calculated from Eq. 22 
 
c0/c1 and τ0 are from Fujita’s solution 

For θ1 ≥ 0.8 f(X1) is approximated by  where k =  3.9 and 
1kXe− ( )[ ]

1

0m

222 1m2k
−∞

=
∑ π++  ≈ 0.061.  

For θ1 = 0.5 the exponential approximation is poor so I(n) is evaluated numerically. 
τd is calculated from Eq. 29 with τ1d from Eq. 28. 
For the linear case (θ1 → 0) values of τ0, τ1d and τd are calculated directly from Eq. 5. 
1/6τd represents the ratio (Dapp/D0) calculated from the time at delay (Eq. 32). 
 
derived.  In figure 5 the “slope” and “intercept” diffusivities originally reported are compared 
with the corrected values, derived by application of Eqs. 31 and 32. The corrected diffusivities 
calculated from the non-linear model are smaller by factors of 4 to 5, relative to the original 
integral values, and show much greater consistency between the “slope” and “time delay” values.  
The “slope” diffusivities derived from the linear model are greater than the “time delay” values 
by factors of 1.5 to 2.0.  This result is in accordance with the predictions of the non-linear model 
for a highly favorable isotherm, as noted above. 
 
 Limited experimental data showing the temperature dependence of the diffusivity for p-
xylene at 2.17 Torr are also reported by Shah and Liou (4).  Since the pressure was maintained 
constant the loading will vary with temperature.  The “time delay” values which do not depend 
on precise knowledge of the equilibrium loading are therefore considered to be more reliable.  
These data are plotted in Arrhenius form in figure 7 together with the corrected D0 values 
derived from the non-linear analysis assuming that at all temperatures θ1 > 0.98 so that τd is 
always close to its limiting value of 0.04.  Also shown are experimental values of D0 and D 
obtained from ZLC, TZLC, and gravimetric measurements at higher temperatures.  It is evident 
that the activation energies for both data sets are almost identical (~ 27kJ/mole).  The original 
membrane diffusivity values are approximately double the (D0) values extrapolated from the 
ZLC/gravimetric data whereas the “corrected” membrane values are smaller than the ZLC values 
by a similar factor and coincide with the extrapolation of the TZLC self-diffusivities.   
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Variation of Do with Pressure (PX at 298K)
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Fig.6 Variation of diffusivity with sorbate pressure for p-xylenes in a single crystal 

zeolite membrane at 298K showing the comparison between “slope” and “time 
delay” values derived from the linear and non-linear models.  Data of Shah and 
Liou (4)

 
Diffusion in the direction of the long (z) axis of a silicalite crystal requires the diffusing molecule 
to jump successively between the straight and sinusoidal channel systems.  The long p-xylene 
molecule can execute such jumps only with difficulty so the diffusivity in the z direction is 
smaller than that in the other directions and consequently smaller than the average value 
measured by ZLC or uptake measurements. Self-diffusion also requires the p-xylene molecules 
to pass between the two channel systems in order to pass one another so the coincidence between 
the self-diffusivity and the transport diffusivity in the z-direction appears physically reasonable. 
The “corrected” membrane values, which represent transport diffusion in the z direction,  
therefore appear to be consistent with the ZLC and gravimetric data.   
 
Conclusions 
  
 The simple analytic model proposed here depends on the assumptions that the 
equilibrium isotherm is Langmuirian and the corrected diffusivity is independent of loading.  
These assumptions are at best approximations which become progressively less valid at high 
loadings.  Nevertheless the model appears to provide a good representation of the experimentally 
observed behavior and leads to the following specific conclusions: 
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Fig. 7 Arrhenius plot showing temperature dependence of the limiting diffusivity (D0) 

and tracer self-diffusivity (D) for p-xylene/silicalite and the comparison between 
ZLC, gravimetric and corrected single crystal membrane data. (Data are from refs. 
4, 7 and 8) 

 
   
1. The model provides a useful description of the transient behavior of a membrane under 
non-linear conditions and thus extends the time delay method of measuring diffusion to non-
linear systems. 
 
2. Application of the classical linear model to a non-linear (Langmuirian) system will yield 
erroneously high apparent diffusivity values which depend on the loading level at the upstream 
face. 
 
3. Even under non-linear conditions the diffusivity values derived from slope and time delay 
should be similar except at very high loadings (θ1 → 1.0) under which conditions the slope 
values will be higher than the time delay values. 
 
4. Application of the non-linear model to reported data for diffusion of p-xylenes in 
silicalite yields diffusivity values which are self consistent and are also consistent with the 
transport and self-diffusivity values derived from ZLC and uptake rate measurements. 
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5. The observation that the limiting transport diffusivity (D0) in the z-direction (derived 
from the single crystal membrane measurements) coincides with the self-diffusivity (measured 
by TZLC) suggests that both these processes are controlled by the frequency with which the p-
xylene molecules can jump between the straight and sinusoidal channels.  Transport diffusion in 
a silicalite crystal is clearly non-isotropic, as shown by the difference between the average value 
of D0 (ZLC) and the value of D0 in the z-direction derived from the single crystal membrane 
measurement.  The above model implies that self-diffusion should be isotropic and this 
conclusion could be tested experimentally by repeating the single crystal membrane 
measurements under tracer exchange conditions in a Wicke-Kallenbach system.  

 
Notation 

 
b Langmuir equilibrium constant 
B mobility constant 
c sorbate concentration within membrane 
c1 value of c at upstream face 
cs saturation limit (in Langmuir expression) 
c0 initial value of c (at τ1=0, x1=0) 
C c/c1 – dimensionless concentration 
D  diffusivity 
D         self-diffusivity 
D0 limiting diffusivity (at low loading) 
D self-diffusivity 
J flux 
K Henry constant 
ℓ membrane thickness 
ℓ1 defined by Eq. 22 
p sorbate pressure or partial pressure 
p1 sorbate partial pressure at equilibrium with membrane concentration c1
Q cumulative flow through unit cross sectional area of the membrane 
R gas constant 
t time 
t0 breakthrough time 
td time delay of long time asymptote 
τd1 time delay  ( )121

0 /tD d  
T temperature (K) 
x distance 
x1 distance relative to point x=(ℓ-ℓ1) 
X x/ℓ - dimensionless distance coordinate 
X1 x1/ℓ1 – dimensionless distance coordinate 
y tD/x 02  - dimensionless parameter 
μ chemical potential 
τ D0t/ℓ2 – dimensionless time parameter 
τ1 D0t/ℓ12 – dimensionless time parameter 
τ0 dimensionless breakthrough time (D0t0/ℓ2) 
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τd time delay (or intercept of long time asymptote)  (D0td/ℓ2) 
θ c/cs fractional loading 
θ1 c1/cs fractional loading at upstream face 
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Appendix 
  
 Fujita’s solution may be written in the following form: 
 
   ( ) )(II e;eC 12
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These equations define C(X,,τ) with φ , μ as auxiliary parameters which are related to θ1 through 
the definitions of ).(Iand)(I),(f 1φφ  
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