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Abstract 
 Nuclear magnetic resonance (NMR) spectroscopy was used to study exchange of three 
distinctly different molecules across the membranes of human red blood cells (RBCs). In 
studying water, t-butanol, and dimethyl sulfoxide we exploited the marked differences in the 
apparent diffusion coefficients of these species inside and outside the cells in suspensions. 
The measurements were made with diffusion ordered spectroscopy (DOSY) with a domain of 
‘diffusion times’ of 20 - 100 ms. In attempting to make the DOSY spectra quantitative we 
identified time domains for each of the three molecules in which the spectra showed well 
resolved peaks, and those in which only a single peak was evident for two of the species. The 
apparent mean resident times for water and t-butanol in the RBCs estimated by the 
methodology were ~17 ms, while the DMSO exchange was too slow, on the NMR timescale, 
to be quantified by this method. However, it is very clear that other methods that are based on 
regression analysis with a prescribed fitting function provide more reliable estimates of 
exchange rate constants. Also, to make the DOSY analysis more generally accessible we 
implemented a Laplace transform inversion method (the Post-Widder algorithm), and a 
procedure for enhancing the resolution of the resulting diffusion spectra by using standard 
functions in Mathematica. 
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Introduction  
 The aim of this study was to investigate the use of the nuclear magnetic resonance (NMR) 
two dimensional (2D) diffusion-ordered spectroscopy (DOSY) experiment to measure 
exchange rates of solutes between the intra- and extracellular compartments of an erythrocyte 
(RBC) suspension. This method exploits the different apparent diffusion coefficients of the 
solutes in each compartment to distinguish between the exchanging populations. 
 A pulsed field-gradient spin-echo (PGSE) method for measuring the exchange rate 
constants of a solute or solvent in a two-compartment system has been described by Kärger et 
al. [1,2]. The method relies on the molecule having a different diffusion coefficient value in 
each compartment and the expression describing the attenuation of the NMR signal, R, is bi-
exponential: 
 
   R = P1 exp(-KD1Δ) + P2 exp(-KD2Δ)      ,               (1) 

 
where D1, D2, P1 and P2 are the apparent diffusion coefficients and population fractions, 
respectively, that are functions of the true parameters modulated by exchange, in each 
compartment. K is equal to γ2δ2g2 where γ is the magnetogyric ratio of the observed nucleus; 
δ is the gradient duration; g the gradient amplitude; and Δ is the time between the gradient 
pulses and defines the ‘diffusion period or interval’. In subsequent analysis described in the 
Appendices we use b = K Δ.   
 In a suspension of RBCs the cell membrane acts as a semi-permeable barrier to some 
molecules and since the intracellular milieu has a high protein concentration, this results in 
different diffusion coefficients for the molecules in the intra- and extracellular compartments. 
The molecules undergo restricted diffusion in the intracellular compartment and obstructed 
diffusion in the extracellular compartment. The technique has been used to measure 
quantitatively the exchange of water [3] and formate ions  [4] across the membranes of intact 
RBCs.  
 DOSY [5] is a powerful technique to resolve the overlapping peaks in 1-dimensional (1D) 
spectra of components of a mixture of solutes, based on differences in their apparent 
diffusion coefficients. 2D-DOSY spectra are obtained by a suitable Laplace inversion of data 
from stacked plots of diffusion-attenuated 1D PGSE spectra that at each chemical shift are 
described by the sum of decaying exponentials. The result is a 2D spectrum with chemical 
shift on one axis and the distribution of diffusion coefficients on the other axis. Molecules 
with overlapping resonances are separated on the basis of their diffusion coefficients in this 
“diffusion dimension” [6]. A review of the technique is presented elsewhere [7].  
 The effects on DOSY spectra of protons on a molecule exchanging between two 
chemically distinct sites with different diffusion coefficients and the same chemical shift have 
been theoretically addressed by Johnson [8]; but to our knowledge no experimental data for a 
two-site membrane transport system have been presented. If the diffusion coefficients of the 
molecule in the two sites are sufficiently different, and provided that there is negligible 
exchange during the diffusion period, then two peaks at different diffusion coefficients 
should be seen in the DOSY spectrum. If any one molecule exchanges many times between 
the two sites during the diffusion period then a single peak at an intermediate diffusion 
coefficient should be seen in the DOSY spectrum.  
 Although the effect of two-site exchange on DOSY spectra has been analysed, there are 
few detailed reports of the use of the theory in the literature: The exchange of labile amide 
and hydroxyl protons with bulk water provides important information about the structures of 
biological molecules, as was shown in a study of the amide proton exchange rates, obtained 
from diffusion measurements, in the antibiotic peptide viomycin [9]. 
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 A DOSY study of the exchange of saccharose hydroxyl protons with bulk water in a 
water/d6-DMSO solvent mixture has been presented [10]. Adjusting the solvent ratio allows 
control over the relative exchange rates of labile protons; hence the system may be placed 
experimentally into slow exchange with respect to chemical shift. Thus resonances at 
different chemical shifts are observed for bulk water and the various saccharose hydroxyl 
protons [10]. A series of DOSY spectra recorded at increasing diffusion times shows that as 
the diffusion time is increased the apparent diffusion coefficient of the labile hydroxyl 
protons approaches that of bulk water, with the more labile protons approaching most rapidly 
the diffusion coefficient of bulk water. This provides a qualitative estimate of the relative 
rates of exchange of the saccharose hydroxyl protons with water and the rates agree with 
quantitative measurements of exchange obtained from a 2D-EXSY experiment. 
 The exchange of the hydroxyl proton of t-butanol with bulk water in a water/d6-DMSO 
solvent mixture has been reported [11]. The quantitative measurements of the hydroxyl 
exchange rate were determined by simulating the attenuation of the hydroxyl magnetization 
as a function of gradient strength during the PGSE experiment. The data are consistent with 
the apparent diffusion coefficients estimated from DOSY spectra. 
 The three previous studies were on systems where labile protons exchange between two 
different chemical environments that have different diffusion coefficients. An RBC 
suspension in contrast has two different physical environments, where a molecule that 
exchanges across the membrane experiences two different diffusion coefficients caused by 
restricted diffusion inside the cells and, to a lesser extent, obstructed diffusion when outside 
them. In general, the proton chemical shifts of a molecule are the same both inside and 
outside RBCs as there is little alteration of resonance frequency in the two chemical 
environments; however there are some solutes for which the different environments do 
produce an experimentally exploitable difference in frequency [12-14].  
 In this paper we present a DOSY study of the exchange of H2O, and a mixture consisting 
of HOD, DMSO and t-butanol across the membranes of intact RBCs. High concentrations of 
DMSO and t-butanol were introduced into RBCs without deleterious effects on them, and the 
three molecules had different transmembrane exchange rates. However, quantitative 
estimates of the exchange rate constants, other than order-of-magnitude estimates were not 
able to be made in contradistinction to other methods that involve direct-regression of a 
predetermined fitting function [e.g., 15] . 

 
Materials and Methods 
Sample Preparation 
 All chemicals were of Analytical Reagent (AR) grade. Dimethylsulfoxide (DMSO) was 
obtained from Sigma (St. Louis, MO, USA) and t-butanol was from Ajax Chemicals (Seven 
Hills, NSW, Australia). D2O was obtained from ANSTO (Lucas Heights, NSW, Australia). 
 Freshly drawn venous blood was washed twice in ice cold H2O/saline (154 mM NaCl, 5 
mM glucose). Following centrifugation at 3000 x g at 4oC the plasma and white-cell buffy 
coat were removed by aspiration using a water pump. The washed RBCs were suspended in 
saline solution and bubbled with CO for ~5 min to convert oxy- and deoxyhaemoglobin to 
diamagnetic carbonmonoxyhaemoglobin; the CO results in improved spectral resolution [12]. 
RBCs used for studies on the exchange of H2O were washed once more in H2O/saline. When 
the exchange of HOD, DMSO, and t-butanol were studied the RBCs were washed further 
with D2O/saline/5 mM glucose, and three more times in the same buffer containing 
increasing amounts of dimethylsulfoxide (DMSO) and t-butanol; the concentration of the two 
solutes had to be gradually increased otherwise the cells lysed. The final concentrations of 
DMSO and t-butanol were 230 and 106 mM, respectively, giving methyl group proton 
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concentrations of 1380 and 954 mM for the two solutes. Washing the cells in D2O reduced 
the size of the 1H2O signal to approximately the same size as those from the other two 
solutes. The HOD concentration was estimated, from integral ratios, to be ~1100 mM. 
Samples of 1 cm length were made up to a haematocrit of 0.7 in 5-mm outer-diameter 
Shigemi NMR tubes (Wilmad, Buena, NJ, USA).  
 
NMR spectroscopy 
 NMR spectra were obtained on a Bruker (Karlsruhe, Germany) DRX-400 spectrometer 
with a 9.4 T vertical wide-bore magnet operating at 400.13 MHz for 1H observation. A 
Bruker Diff-25 diffusion probe capable of providing gradients of up to 9800 mT m-1 in the z-
direction was used. The gradient generated in this probe is linear over 1 cm. The experiments 
were run unlocked as this probe does not have a deuterium lock channel; this diminished the 
quality of the DOSY spectra as any field drift altered the resonance frequency of the peaks 
during the measurement, adversely affecting the Laplace transform in the second dimension 
of the 2D spectrum. Experiments were conducted at 25oC and were of approximately 40 min 
duration. 
 A bipolar longitudinal eddy current delay (BPLED) pulse sequence [16] was used to 
obtain DOSY spectra. Sine-shaped gradients of 1 ms duration (δ/2) were used in all 
experiments with a delay, τ, the time between the bipolar gradients, of 5 ms. DOSY spectra 
were acquired at various diffusion times, Δ, the time between the leading edges of the 
encoding and decoding gradients. For each experiment 32 spectra were obtained with the 
gradient strength varied in equal increments. The gradient was varied, for an H2O washed 
sample, from 50 mT m-1 to a maximum of 1960 mT m-1 (for Δ = 20 ms) to attenuate the 1H2O 
signal to <5% of its initial intensity. For larger values of Δ the maximum gradient required to 
attenuate the signal was less.  For an HOD, DMSO, t-butanol washed sample a maximum 
gradient of 3450 mT m-1 (Δ = 20 ms) was required to attenuate the intracellular DMSO peak 
to <5% of its original intensity. Typically, 16 transients were acquired into 4k data points 
using a spectral width of 4000 Hz. The spectra were processed using an exponential 
apodization function corresponding to a 3 Hz line broadening and Fourier transformed into 
8k data-point spectra. DOSY spectra were processed with the Bruker XWINNMR software 
package using a two-exponential fit to the data.  
 
Numerical analysis 

 Nonlinear regression analysis of the primary PGSE data was carried out by using Origin 
Pro software (OriginLab, Northampton, MA, USA); standard errors and residuals were 
generates by the fitting routines. 
 
Results and Discussion  
DOSY of 1H2O in RBCs 
 Figure 1 shows DOSY spectra of an H2O/saline washed RBC suspension recorded at 
three diffusion times, Δ = 20, 60, and 140 ms. With increasing diffusion time the two peaks 
evident with Δ = 20 ms (Fig. 1A), coalesced to leave only one when Δ = 140 ms (Fig. 1C) 
thus yielding a single average diffusion coefficient value. The mean residence time of a water 
molecule in an RBC is ~13 ms at 25oC [17], so a water molecule would have exchanged ~11 
times between the intra- and extra-cellular compartments when Δ = 140 ms. This time 
corresponded to that in which coalescence of the two peaks was observed. Calculations by 
Johnson [8] show that for a two-site exchange system with equal mean residence times for 
the spins at each site, more than six exchanges between sites must occur during the diffusion 
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time to observe a single average diffusion coefficient. Therefore for the RBC suspensions 
estimates of the mean lifetime of water could be made (see below).  
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Fig.1: Contour-plot DOSY 1H NMR spectrum of RBCs washed in H2O/saline. The values of the diffusion time 
Δ were 20 ms (A), 60 ms (B) and 140 ms (C). Experimental conditions and NMR parameters are given in 
Materials and Methods. 

   

DOSY of HOD, DMSO and t-butanol in RBCs 
 The equilibrium 1H NMR spectrum of a suspension of RBCs that has been washed in 
D2O/saline, DMSO and t-butanol is shown in Fig.2. HOD and t-butanol exchanged across the 
RBC membrane on the millisecond timescale and DMSO exchange was on the tens-of-
seconds time scale. Thus the DMSO molecules were effectively trapped in the intra- and 
extra-cellular compartments during the relatively short diffusion times used in these 
experiments. Intra- and extracellular HOD and t-butanol have resonances with the same 
chemical shift in both compartments respectively. The peak from DMSO showed a small 
“split peak” effect usually seen in 31P and 19F spectra of phosphorous [18] and fluorine 
containing compounds [19] that exchange across the RBC membrane. The peak separation 
between signals from intra- and extracellular DMSO was 12 Hz and extracellular DMSO 
gave rise to the high frequency peak. 
 

 

HOD

DMSO

t-But

6.0 5.0 4.0 3.0 2.0 1.0 0.0

Chemical Shift (ppm)  

Fig. 2: 1H NMR spectrum of a 
suspension of RBCs, 
haematocrit 0.7, washed with 
D2O/saline containing 106 mM 
t-butanol and 230 mM DMSO. 
Experimental conditions and 
NMR parameters are given in 
Materials and Methods. 
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 Figure 3 shows DOSY spectra of RBCs washed in D2O/saline containing DMSO and t-
butanol, recorded with three different diffusion times: at Δ = 100 ms the HOD and t-butanol 
signals showed a single average diffusion coefficient for the intra- and extra-cellular 
compartments. This was the outcome expected for rapidly exchanging molecules. 
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Fig. 3:  Contour-plot DOSY 
1H NMR spectra of RBCs 
washed in D2O/saline 
containing 106 mM t-butanol 
and 230 mM DMSO. The 
values of the diffusion time, Δ, 
were 20 ms (A), 40 ms (B) 
and 100 ms (C). Details of the 
experimental conditions and 
NMR measurements are given 
in Materials and Methods. 
 
     A value of ~17 ms 
was deduced for the 
mean residence time of 
water and t-butanol using 
Johnson’s calculation (7) 
that, for a two-site 
exchange system, six 
exchanges of the spin 
between sites must occur 
during the diffusion time 
to observe a single, 
average, diffusion 
coefficient. The diffusion 
coefficient of the 
intracellular DMSO 
signal however showed 
the effect of restricted 
diffusion when the 
measured value became 
smaller at longer 
diffusion times [20]. 
Molecules that are 
effectively trapped inside 
or outside RBCs during 
the diffusion time are 
expected to give a 
separate peak in the 
DOSY spectrum. 

  
 The estimated extra-cellular DMSO diffusion coefficient was relatively unaffected by the 
range of diffusion times used for the measurements. This is consistent with DMSO 
undergoing relatively unrestricted diffusion in the space outside the RBCs. 
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Laplace inversion in DOSY 
 The utility of DOSY to provide a distribution of diffusion coefficients for the construction 
of 2D displays depends on taking the inverse Laplace transform of intensities from stacked 
plots of diffusion-attenuated spectra. However, the technique is beset with computational 
difficulties: Analysis using the Bruker XWINNMR software involves selecting a global one-, 
two- or three-component exponential fit to the diffusion data and then Laplace-inverting the 
exponential decays obtained from the regression analysis. Fitting a function that is the sum of 
two exponentials to a decay curve that is actually a single exponential can result in fitting the 
second exponential with a very small amplitude, or two exponentials are fitted with very 
similar apparent diffusion coefficients. In view of these problems the experimentalist is 
required to specify the number of exponentials in the fitted function; and this function is then 
used in all subsequent data columns of the spectral set. This blanket specification of a general 
fitting function for all peaks may not be appropriate. On the other hand in methods such as 
SPLMOD [7] the program automatically attempts fitting one-, two- or three-exponential fits 
to each column of data, and it determines which of the fits is statistically the “best”. The 
number of exponentials that gives the best fit is evaluated individually for each column of 
data. 
 The DOSY spectrum for H2O in an RBC suspension at a diffusion time of Δ = 20 ms 
(Fig. 1A) yielded two apparent diffusion coefficients of 2.2 x 10-10 m2 s-1 and  9.1 x 10-10 m2 
s-1. The integrals of the diffusion-attenuated water signal from this experiment were also 
fitted to a two-exponential decay model using the program Origin. Namely, 
 

       ,                (2) R(b) =  P1(0) e− D1b  +  P2(0) e− D2b

 
where P1(0) = 0.275, P2(0) = 0.725, D1 = 2.42 x 10-10, D2 = 10.67 x 10-10.  Values of 2.4 x 10-

10 m2 s-1 and 10.7 x 10-10 m2 s-1 were obtained. It can be seen that these values are in very 
good agreement with those obtained by the inverse Laplace transformation used to obtain the 
DOSY spectra.  
 

Alternative Laplace inversion 
 Since the inception of DOSY, with its use of the CONTIN [22] algorithm, other methods 
of Laplace inversion of NMR-diffusion data have not been widely used. The method exists in 
a mature and apparently optimized form. However, there is merit in having to hand an 
algorithm that is very easily implemented and for which the various stages of its application 
are open to ready graphical inspection. Such a direct numerical method was used previously 
to obtain “kinetic” spectra from superimposed NMR peaks of different relaxation times in 
RBC suspensions [21]. The method is the real inversion formula of Post and Widder [23,24]. 
Since the algorithm appears not to have been previously applied to NMR-diffusion data, we 
explored its strengths and weaknesses in analyzing PGSE data from the sample of 1H2O in 
RBCs used to generate Fig. 1A.  
 We focus attention here on the data analysis that began with the series of PGSE spectra 
used to generate Fig. 1A which are shown in the inset of Fig. 4. Even allowing for the small 
size of this figure it is impossible to perceive if there are single- or double-exponential 
features of the dependence of PGSE signal intensity on the value of b. The graph of these 
data, interpolated by a shifting cubic spline, versus Ln(b) are clearly sigmoidal (Fig. 4). 
 The mathematical details of the Post-Widder algorithm, as it applies to PGSE data are 
given in Appendix 1; and an implementation in Mathematica [24] is given in Appendix 2. 
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The analysis simply requires the generation of a plot of the second derivative of the Stejskal-
Tanner data minus the first derivative [Eq. (A9)] versus Ln(2) – Ln(b). The plot gave the 
distribution function of the values of D and the abscissal positions of the maxima gave the 
estimates of the mean apparent diffusion coefficients. 
 

Figure.  4: 1H NMR PGSE data from Fig. 1A 
of 1H2O diffusion in a suspension of RBCs 
obtained with Δ = 20 ms and δ = 2 ms. The 
inset shows the plot of Eq. (1) onto the 
primary PGSE data with the fitted parameters 
that are given below Eq. (2). The main graph 
of the figure shows the same smooth data, 
with an interpolation function applied, 
plotted versus Lnb. This processing of the 
data was a prelude to applying the Post-
Widder algorithm for Laplace inversion of 
the data.   

  

 Figure 5: Graph of the calculated D-
distribution (the lower curve) and the D-
distribution with enhanced-resolution (the 
curve with two peaks of similar amplitude). 
The position of the maxima in the un-
enhanced plot corresponded to values of 2.2 
x 10-10 m2 s-1 and 10.0 x 10-10 m2 s-1, in 
excellent agreement with the values used to 
generate Fig. 4 in the first place. The 
resolution-enhanced maxima are shifted to 
the left but give values of D that are similar 
the previous values. 
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 The position of the maxima in the un-enhanced Post-Widder plot in Fig. 5 gave values of 
2.2 x 10-10 m2 s-1 and 10.0 x 10-10 m2 s-1 that are in excellent agreement with the values that 
were used to generate the curve in Fig. 4 in the first place, and with the DOSY-derived values 
of 2.2 x 10-10 m2 s-1 and 9.1 x 10-10 m2 s-1.  
 The Laplace transform of e-Db, where b is the independent variable, is 1/(s + D) [26]; and 
when this function is plotted as an absolute value versus the Laplace variable, s, it gives a 
peak with a singularity at s = -D and ‘wings’ like that of a Lorentzian spectral line. The Post-
Widder algorithm correctly gives a single peak centred on D for the transformation of an 
exponential function. However, it generates a peak that is much wider than the analytical 
inverse. When there are two exponentials, as shown in Fig. 5, this broadening becomes a 
barrier to precise identification of the maxima, and hence estimates of the diffusion 
coefficients. Therefore an additional step in the analysis can be to sharpen the rather broad 
peaks in the Post-Widder diffusion spectra by applying a type of signal enhancement. The 
simplest approach is via the convolution theorem of Fourier analysis [27]. Our 
implementation in Mathematica of this signal enhancement is given in Appendix 2. And the 
resolution-enhanced diffusion spectrum shown in Fig. 5 is a curve in which the maxima are 
shifted to the left; but the implied values of D are the close to the previous ones. 
 It will not have escaped the reader’s attention that all we seem to have achieved is another 
way of presenting the data that were analysed by nonlinear regression of a double exponential 
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onto the PGSE data. By doing this we obtained estimates of the two apparent D values for 
water inside and outside the RBCs. On the other hand this representation is the very basis of 
the DOSY analysis and as such the Post-Widder algorithm has been shown to be suitable for 
generating DOSY spectra. Certainly, the algorithm faithfully returned the values of the two 
diffusion coefficients that were used to represent the original data. 
 

Conclusions 
 Our system of RBCs with three different molecular species, that exchanged across the 
human RBC membrane at different rates, showed characteristic DOSY spectra that were of 
comparable quality to those obtained with isotropic chemical solutions. However, the DOSY 
analysis did not yield estimates of diffusion coefficients that were sufficiently accurate or 
reproducible to enable application of the Kärger two-site exchange theory [1,2]; but more 
importantly the relative population sizes that are critical to exchange analysis could not be 
relied upon. The Kärger two-site analysis had been done previously by direct regression of 
the requisite function onto 1D PGSE data; and yet the DOSY representation of the data did 
provide a useful, visually evocative, indication that exchange was occurring across the RBC 
membranes. And we were able to estimate an order-of-magnitude value for the mean 
residence time of both water and t-butanol in the RBCs. The exchange rate of DMSO was 
substantially too slow for an estimate of the exchange rate to be made; the persistence of two 
peaks in the DOSY spectra for all the values of Δ is evidence of this (Fig. 3).  
 The Post-Widder algorithm  for carrying out Laplace inversion of PGSE data was readily 
implemented in Mathematica, and presumably will be for similar high level programming 
packages. With a test function derived from the real data used for the DOSY analysis, the 
Post-Widder algorithm faithfully represented distributions of D values that had maxima at the 
values expected for the direct two-exponential fit to the primary data. 
 Finally, DOSY analysis provided a useful visual representation of the membrane transport 
system in RBC suspensions and yet quantification requires other well-established forms of 
data analysis. Given the conclusion that DOSY could only be used non-quantitatively, the 
Post-Widder algorithm provides a readily accessible means of generating the second 
dimension of 2D PGSE spectra. 
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Appendix 1 Simple numerical Laplace inversion of PGSE data 
 In the PGSE experiment the spectral envelope of NMR resonances (peaks) of components 
with different diffusion coefficients in a mixture, for a given diffusion time, decreases with 
increasing magnetic field gradient strength. The two-site case is given by Eq. (1) but the 
general case of n sites is: 
    R(                           (A1) b) = Pi(0)

i=1

n∑  e− Di b

 
where b is the Stejskal-Tanner parameter, and Pi(0) is the proportion of the original signal 
assigned to each species-population that has a diffusion coefficient Di, when b = 0.  If the 
diffusion coefficient is considered to be the variable of integration then the sum in Eq. (A1) 
can be replaced by, 
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    R(      .                     (A2) b) = F(D)
0

∞

∫  e− DbdD

 
 In this form R(b) is seen to be the Laplace transform of F(D) [26]; and F(D) is a 
distribution function of the values of D. 
Hence, 
 
             R(b) = ℑ{F(D)}     ,                     (A3) 
 
where  denotes the Laplace transform, and the distribution of the values of the diffusion 
coefficient is given by the inverse Laplace transform (

ℑ
ℑ−1) of R(b): 

 
                      .            (A4) F(D) = ℑ−1{R(b)}
 
 It is the form of F(D) that we seek from the Laplace-inversion of the data R(b). Inversion 
is carried out in modern versions of DOSY with the sophisticated algorithm constructed by 
Provencher [22]. However, we show here that a much simpler and hence more transparent 
method can be used, at least to guide the use of more elaborate methods. The simple approach 
has the advantage of allowing manipulation and graphing of data that are transformed, at 
various stages of the analysis. It also has the advantage of using standard functions in the well 
known computing environment, Mathematica [25]. Specifically, the Post-Widder inversion 
formula on the real axis [23,24] and written in PGSE-NMR notation is: 
 

F(D) =  lim
m→∞

 
−1m

m!
⎛

⎝⎜
⎞

⎠⎟
 

m
D

⎛

⎝⎜
⎞

⎠⎟

m +1
∂R(m / D)

∂bm
 =  lim

m→∞
 Fm (D)            (A5) 

 
where m is a dummy-variable integer. The nomenclature m/D is used to indicate that b 
corresponds to this ratio, for any computed value of F(D). It is assumed that the 
approximation in Eq. (A5) improves as m increases and yet as this occurs increasingly higher 
order derivatives are required. It transpires that a choice of m = 2 is a practical compromise 
between a low order approximation and the noise introduced in taking higher numerical 
derivative of PGSE data. Hence the second order approximation with m = 2 in Eq. (A2) 
yields 

   

 

R(b) ;  F2(D) e− Db

0

∞

∫ dD

        = 
4

D3

⎛

⎝⎜
⎞

⎠⎟
∂2R(b)

∂b2  e− Db

0

∞

∫ dD

     ,                     (A6) 

 
Equation [A6] can be written as 
    

   
 
R(b) ;  

4
D3b2

⎛

⎝⎜
⎞

⎠⎟
 H(D, b) e−Db

0

∞

∫ dD      ,            (A7) 

 
where 
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   H(D,b) = b2 ∂2R(D, b)
∂b2      .              (A8) 

 
Note that R is written as a function of both b and D, as seen from Eq. (A1), to give explicit 
meaning to the appearance of D on the left hand side of Eq. (A8). By using the change of 

variable ∂L n(b) = 
1
b

 ∂b  in Eq. (A8) we obtain, 

 

  

H(D, b) = b 
∂

∂L n(b)
 
1
b

 
∂R(D, b)
∂L n(b)

⎡

⎣
⎢

⎤

⎦
⎥

            = 
∂2R(D, b)
∂[L n(b)]2  − 

∂R(D, b)
∂L n(b)

,                     (A9) 

 
 This is the key equation to which we return below. But it is useful to detour and consider 
that by differentiating Eq. (A1), Eq. (A9) gives, 
 
        .           (A10) H(D, b) = Pi(0)

i=1

n∑  Di
2b2e− Di b

 
 The integral of the distribution function should be the sum of the components for each 
diffusion coefficient, when b = 0. This is shown as follows from Eq. (A10): 
 

  ,         (A11) H(D,b)
−∞

∞

∫  dL n(D) = Pi (0)
i=1

n

∑  D2  b2e− Db

−∞

∞

∫ dL n(D)

 
and the integral on the right-hand side of the equation is seen to have a simple solution, by 
noting that the Laplace transform of D is 1/b2, 
 

   

D2b2e− Db

−∞

∞

∫ dL n(D) = b2 D e− Db

−∞

∞

∫ dD

                     = 1
.          (A12) 

 
Therefore Eq. (A11) reduces to, 
 

    ,          (A13) H(D,b)
−∞

∞

∫  dL n(D) = Pi (0)
i=1

n

∑
 
which was sought. Also, note the interesting result that Eq. (A11) is symmetrical in D and b 
so,  
 

    ∂H(D, b)
∂L n D

 = 
∂H(D, b)

∂L nb
,           (A14) 
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and from Eq. (A11), 
 

   .        (A15) H(D,b)
−∞

∞

∫  dL n(D) = H(D,b)
−∞

∞

∫  dL n(b) = Pi
i=1

n

∑ (0)

 
And the distribution equation is seen to be the same whether it is plotted versus Ln(D) or 
Ln(b); but notably only Ln(b) is available to us from the experiments.  
 Returning to Eq. (A9), we note that b corresponds to (m = 2)/D so Ln(D)  = Ln(2/b) = 
Ln(2) – Ln(b). Hence, a plot of the second derivative of the Stejskal-Tanner data minus the 
first derivative [Eq. (A9)] versus Ln(2) – Ln(b) gives the distribution function of the values of 
D. 
 
 
Appendix 2 Mathematica implementation of Post-Widder Laplace inversion 
 To implement the above procedure, PGSE data are listed as (b, R(b)) pairs where R, the 
peak attenuation, is the spin-echo peak intensity normalized to the signal when the magnetic 
field gradients are zero. And b is the Stejskal-Tanner parameter, b = γ2 g2 δ2 (Δ – δ/3), where 
the parameters are defined in the main text. The data are denoted by 
data = {{b1, R(b1)},{ b2, R(b2},…}; 
(* Find the number of data pairs.*) 
len1 = Length[data]; 
(* Convert the data so that b is replaced by Ln(b).*) 
dataLn = Table[{Log[data[[j,1]], data[[j,2]]}, {j, 1, len1}]; 
(* Find the maximum value of Ln(b) in the data.*) 
maxLnb = dataLn[[len1,1]]; 
(* Graph R versus Ln(b) data.*) 
graph1= ListPlot[dataLn, PlotJoined -> True]; 
(* Interpolate a shifting cubic spine on the R versus Ln(b) data.*) 
intDataLn = Interpolation[dataLn];   
(* Obtain the zeroth, first and second derivatives of the interpolation function, where the 
evaluation interval is chosen to be 0.02; but it could be any value depending on the 
numerical resolution required.*) 
intDataLnD0 = Table[{x, intDataLn[x]},{x, 0.001, maxLnb, 0.02}]; 
intDataLnD1 = Table[{x, intDataLn’[x]},{x, 0.001, maxLnb, 0.02}]; 
intDataLnD2 = Table[{x, intDataLn’’[x]},{x, 0.001, maxLnb, 0.02}]; 
(* Obtain the length of the data file.*) 
len2 = Length[intDataLnD2]; 
(* Change the abscissa as in the text below Eq. [A15] and, according to Eq. [A9], subtract 
the first- from the second-derivative.*) 
result = Table[{Log[2.0]- intDataLnD2[[j,1]], intDataLnD2[[j,2]] – intDataLnD1[[j,2]]},{j,1, 
len2}]; 
graph2 = ListPlot[result, PlotJoined->True]; 
 
 (* graph2 has the D-distribution plot, and the number of maxima indicate the number of 
different species with the same resonance frequency while the maximum values give the 
corresponding D values. *) 
 
 It is quite common that the D-distribution plot is not well resolved and resolution 
enhancement is sought. One way this can be implemented is by taking the Fourier transform 

© 2007, B. E. Chapman and P. W. Kuchel
Diffusion Fundamentals 4 (2007) 8.1 - 8.15 14



 

of the data, after first interpolating a shifting cubic-spline through it. The real part of the 
Fourier transformed data is multiplied by an increasing exponential prior to taking the inverse 
Fourier transform of the combined modified real and imaginary parts. An implementation of 
this in Mathematica is as follows. 
 
len3  = Length[result]; 
minAbscissa = result[[len3,1]]; 
maxAbscissa = result[[1,1]]; 
interRes = Interpolation[result]; 
(* The list data2 contains the interpolation version of the D-distribution function. *) 
data2 = Table[{x, interRes[x]}, {x, minAbscissa, maxAbscissa, 0.01}];  
(* data3 contains just the interpolated  ordinate values of the D-distribution function. *) 
data3 = Table[interRes[x], {x, minAbscissa, maxAbscissa, 0.01}]; 
(* Fourier transform data3. *) 
fourierDist = Fourier[data3]; 
(* To inspect the real and imaginary parts of the Fourier transformed data execute the 
following functions. *) 
graph3 = ListPlot[Re[fourierDist], PlotJoined->True]; 
graph4 = ListPlot[Im[fourierDist], PlotJoined->True]; 
(* To apply resolution enhancement to the data multiply by an increasing (enhancing) 
exponential and then take the inverse Fourier transform. The exponential ‘rate constant’ is 
denoted kenh. *) 
len4 = Length[fourierDist]; 
kenh = 2.5; 
enhancRe = Table[Re[fourierDist[[j]]] ekenh*j/len4, {j, 1, len4}]; 
enhancTot = Table[{enhancRe [[j]] + Im[fourierDist[[j]]}, {j,1,len4}]//Flatten; 
enhResult = InverseFourier[enhancTot]; 
(* Re-instate the correct abscissal scale and eliminate negative values of the ordinate. *) 
distrScaled = Table[{data2[[j,1]], If[Re[enhResult[[j]] >= 0.0, Re[enhResult[[j]]], 0.0]}, {j, 1,  
len4}]; 
graph5 = ListPlot[distrScaled, Plotjoined->True]; 
(* Show the non-resolution-enhanced and the enhanced data on the same graph. *) 
Show[{graph2, graph5}]; 
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