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Abstract

We study two-component single-file diffusion inside a narrow channel that at its ends is open and

connected with particle reservoirs. Using a two-species version of the symmetric simple exclusion

process as a model, we propose a hydrodynamic description of the coarse-grained dynamics with

a self-diffusion coefficient that is inversely proportional to the length of the channel. The theory

predicts an unexpected nonequilibrium phase transition for the bulk particle density as the external

total density gradient between the reservoirs is varied. The individual particle currents do not in

general satisfy Fick’s first law. These results are confirmed by extensive dynamical Monte-Carlo

simulations for equal diffusivities of the two components.
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I. INTRODUCTION

One-dimensional exclusion processes belong to the most studied models in non-

equilibrium statistical mechanics [1, 2]. Their applications are manifold. Among others,

the symmetric exclusion process (SEP) plays a role in diffusion where particles, confined in

a narrow tube, are not allowed to pass each other [3]. This kind of diffusive restriction is

referred to as single-file diffusion and differs qualitatively from normal diffusion described

by Fick’s law. Whereas in the latter case the mean-square displacement of a single particle

grows proportional to time, diffusion is much slower in the single-file case due to mutual

blocking of the particles. The mean-square displacement grows (for late times) proportional

to the square root of time. The anomalous behaviour of the mean-square displacement

usually serves as an experimental indication for the occurrence of single-file diffusion. This

requires to trace a single or more particles which implies to label a certain subset of particles

without changing the diffusion properties. This corresponds to having a two-species particle

system with identical diffusion coefficients [4]. Single-file diffusion is a generic phenomenon

observed many years ago for molecules diffusing in the channels of certain zeolites [5]. More

recently, single-file behaviour has been demonstrated in the transport of colloidal spheres

confined in one-dimensional channels [6]. Moreover confined 1D random motion plays a role

in narrow carbon nano tubes, in biological systems like molecular motors or in non-physical

systems such as automobile traffic flow [7]. Also the famous repton model by Rubinstein

and Duke [8–11] for the motion of single polymer chains, is a lattice gas model of this kind.

Further motivation for employing single-file diffusion with multiple species comes from re-

cent two-species measurements in zeolites [12]. Here, a mixture of toluene and propane was

adsorbed into different zeolites. The authors measured the temperature dependent outflow

and noticed a trapping effect, i.e. in a couple of zeolites the stronger adsorbed toluene

molecules influence and control the outflow of propane.

In [13] the authors review the Maxwell-Stefan theory describing the diffusive behaviour

of a binary fluid mixture where the total current, i.e. the sum of both species, is zero.

The particle-particle interaction is taken into account by including a friction between the

species being proportional to the differences in the velocities. This approach does not apply

to single-file diffusion in a finite system where, as shown below in the framework of the

symmetric simple exclusion process (SEP), the self-diffusivity of single particles plays an
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FIG. 1: Three-state symmetric exclusion model with open boundaries.

important role in the description of the macroscopic behaviour.

The SEP with one species of particles where classical particles with hard-core repulsion

diffuse on a finite lattice is well understood [2, 14–18]. At both ends the chain is connected

to a particle reservoir. One is interested in stationary-state properties like the density profile

determined by the reservoir or the stationary particle current as well as the time evolution

of the particle density and relaxation towards the stationary state. Our approach for an

adequate description of the two-species SEP is a master equation description from which we

derive an ansatz of coupled partial differential equations for the macroscopic density profile.

We consider a one-dimensional lattice with L lattice sites (Fig. 1). Each site i can be

empty or occupied by a particle of type A or B. Due to hard-core interaction any site

carries at most one particle. Particles can hop to nearest neighbour sites (provided the

target site is empty) according to the constant hopping rates DA/B. Hence, DA (DB) is the

probability of an A (B) particle to attempt a jump per unit time. The model is defined by

random sequential update which forbids simultaneous hopping events. Let ai (bi) count the

A (B) particles on site i. Then the densities are the expectation values of the respective

counters: 〈ai〉 ≡ ρA(i), 〈bi〉 ≡ ρB(i). The probability of finding no particle at site i is

〈vi〉 = 〈1 − ai − bi〉. When we consider a chain with open boundary conditions, particles are

injected and removed according to the boundary rates αA/B , γA/B, βA/B and δA/B , following

the notation of [2]. The attempt probability per unit time for an A particle to enter the

system at the left boundary is αA. It leaves the channel at the left boundary according to

γA as illustrated in Fig. 1. The other boundary rates are defined similarly.

By writing this process in terms of a quantum Hamiltonian formalism [2], the system

evolves in time according to the master equation

d

dt
|P (t) >= −H|P (t) > (1)

with the generator

H = b1 + bL +

L−1
∑

i=1

hi,i+1. (2)
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For an explicit representation of the generator we denote the state of a given site i by the

three basis vectors

|A >≡ |1 >=











1

0

0











, |∅ >≡ |0 >=











0

1

0











, |B >≡ | − 1 >=











0

0

1











(3)

corresponding to having an A, no particle or B at site i, respectively. Let Ex,y
k be the 3 × 3

matrix with one element located at column x and row y equal to one. All other elements

are zero: (Ex,y
k )a,b = δx,aδy,b. The operator for annihilation (creation) of an A particle at

site k is a−

k = E1,2
k (a+

k = E2,1
k ) and for annihilation (creation) of B is b−k = E3,2

k (b+
k = E2,3

k ).

Finally, the number operators are ak = E1,1
k , bk = E3,3

k , vk = 1 − ak − bk. This allows to

compose the generator of the process. In this representation the boundary matrices are:

b1 = αA(v1 − a+
1 ) + αB(v1 − b+

1 ) + γA(a1 − a−

1 ) + γB(b1 − b−1 ) (4)

bL = δA(vL − a+
L ) + δB(vL − b+

L) + βA(aL − a−

L ) + βB(bL − b−L) (5)

Hopping in the bulk between site i and i + 1 occurs according to

hi,i+1 = DA(aivi+1 + viai+1 − a−

i a+
i+1 − a+

i a−

i+1)

+ DB(bivi+1 + vibi+1 − b+
i b−i+1 − b−i b+

i+1). (6)

The model is now well defined. Let us proceed by deriving some equilibrium properties of

the process.

II. EQUILIBRIUM PROPERTIES

The open system allows for particle exchange at the boundaries. The system is ergodic

and will relax to a unique stationary state determined by the boundary rates. The stationary

state |P ∗ > does not evolve in time and must obey

H|P ∗ >= 0. (7)

Let us seek a product ansatz for the equilibrium state of the form

|P∗ >=











a

1

b











⊗L

1

(1 + a + b)L
. (8)
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FIG. 2: Three-state symmetric exclusion model with open boundaries – reservoir picture.

The normalization factor of (8) ensures conservation of probability, i.e. ensures that the

probability of finding the system in any state is one. Plugging the ansatz (8) into (7)

provides a set of equations for the boundary rates and one finds a = αA

γA
= δA

βA
, b = αB

γB
= δB

βB
.

Taking into account the normalization determines the A and B particle equilibrium densities

ρA =

αA

γA

1 + αA

γA
+ αB

γB

=

δA

βA

1 + δA

βA
+ δB

βB

(9)

ρB =

αB

γB

1 + αA

γA
+ αB

γB

=

δB

βB

1 + δA

βA
+ δB

βB

. (10)

Besides giving the bulk equilibrium densities, the two equations above provide a recipe

of how to translate the picture of inserting and deleting particles on boundary sites into

a picture of constant reservoirs at the ends, Fig. 2. In equilibrium the bulk contains no

correlations between different lattice sites and the same holds for the boundary and their

adjacent sites. Therefore, jumping from a boundary site into the chain occurs proportional

to the respective hopping rate and proportional to the single species boundary density.

Therefore, given a set of constant boundary rates, Eqs. (9) and (10) define the densities of

a virtual particle reservoir at the respective boundaries.

Note that for this interpretation the left reservoir densities ρ−

A, ρ−

B do not need to be

equal to their fellows on the right edge (ρ+
A, ρ+

B). In this case the system evolves towards a

correlated non-equilibrium stationary state with non-vanishing particle currents. The second

and last terms of (9) and (10) are then stationary densities on the left and right edge of the

system. This parameterisation satisfies (9) and (10) if

αA/B = DA/Bρ−

A/B , γA/B = DA/B(1 − ρ−

A − ρ−

B) (11)

δA/B = DA/Bρ+
A/B , βA/B = DA/B(1 − ρ+

A − ρ+
B). (12)
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III. HYDRODYNAMIC LIMIT

The average densities 〈ai〉 and 〈bi〉 satisfy the equations of motion d
dt
〈ai〉 = −〈aiH〉,

d
dt
〈bi〉 = −〈biH〉 (cf. [2]). This provides the Master equations for a single site,

d

dt
〈ai〉 = DA (〈ai−1vi〉 + 〈ai+1vi〉 − 〈aivi+1〉 − 〈aivi−1〉) (13)

d

dt
〈bi〉 = DB (〈bi−1vi〉 + 〈bi+1vi〉 − 〈bivi+1〉 − 〈bivi−1〉) . (14)

From now on we discuss the case of equal hopping rates DA = DB = D. Imagining the

individual particle species A and B to be distinguishable by a “colour” (in an abstract sense)

we shall refer to the total particle density (averaged over A and B particles) as colourblind

density.

Let us first assume an infinite system and do not care about boundary sites. But still,

in this form the equations of motion are not integrable. Replacing the joint probabilities by

products of expectation values, according to a mean field ansatz which has been proven to

be useful in other systems, fails. However, an exact equation containing no correlators can

be achieved from a sum of both

d

dt
(〈ai〉 + 〈bi〉) = D (〈ai−1〉 + 〈ai+1〉 − 2 〈ai〉 + 〈bi−1〉 + 〈bi+1〉 − 2 〈bi〉) . (15)

The right-hand side contains a second-order difference for both species individually. (15)

is the discrete analogue of the diffusion equation for the colourblind macroscopic profile.

Introducing a lattice constant a and replacing i by the continuous variable x = i
a
, transforms

(15) for the hydrodynamic limit of vanishing lattice constant a into

∂t (ρA(x, t) + ρB(x, t)) = D∂2
x(ρA(x, t) + ρB(x, t)). (16)

for the macroscopic particle densities ρA(x, t), ρB(x, t).

Following the argument of [19] we make an ansatz for the dynamics of a single particle

localized at position x. For a short-time region this particle acts as a tracer particle in the

background of other particles with the self-diffusion coefficient DS(x, t). Going beyond [19]

we argue that for the finite-size problem with open boundaries DS is given by expression

DS = D
1 − ρA − ρB

ρA + ρB

1

L
. (17)

derived originally for a periodic lattice [16]. Additionally, the test particle is subjected to a

drift b caused by the evolution of the entire system towards its stationary state. For a good

6

© 2006, A. Brzank
Diffusion Fundamentals 4 (2006) 7.1 - 7.12



intermixed background one would expect the drift velocity b to be the same for both species

of particles. We thus arrive at the ansatz

∂tρA(x, t) = ∂2
xDSρA(x, t) − ∂xbρA(x, t) (18)

∂tρB(x, t) = ∂2
xDSρB(x, t) − ∂xbρB(x, t). (19)

The self-diffusion coefficient DS as well as the drift b are functions of ρA and ρB and hence,

depend implicitly on x and t. The drift term can be determined by using the colourblind

exact result (16) and one finds

b =
1

ρ
∂x [ρ(DS − D)] . (20)

This completes the hydrodynamic description of the two-component symmetric exclusion

process with open boundaries that we propose. A derivation of DS on a finite lattice with

two different particle species [20] will be presented in a forthcoming paper [21].

IV. STATIONARY STATE

It is a significant property of particle systems with open boundaries that they can relax to

a steady state with non-vanishing particle currents. The stationary state of the colour-blind

profile ρ = ρA + ρB is linear with the slope being determined by the sum of the boundary

densities on the left (ρ− = ρ−

A + ρ−

B) and on the right edge (ρ+ = ρ+
A + ρ+

B) of the system

which is manifest by (16),

ρ = ρ− +
(

ρ+ − ρ−
) x

L
. (21)

Integrating (18) once for vanishing time derivative yields

d

dx
ρA +

(

D

DS
− 1

)

ρ′

ρ
ρA +

jA

DS
= 0. (22)

where jA is the constant A-particle current. Absorbing ρ−

A into the integration constant

yields the solution

ρA(x) =
ρ(x)

ρ−

[

−
LjAρ−

D(ρ+ − ρ−)
+

(

ρ−A +
LjAρ−

D(ρ+ − ρ−)

) (

1 − ρ(x)

1 − ρ−

)L
]

ρ+ 6= ρ−. (23)

The first term is linear in x and describes the bulk region. The nonlinear second term

describes a boundary layer, first observed numerically in the Rubinstein-Duke model [11]
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for different boundary rates. Our analysis shows that the length of the boundary layer does

not scale with system size. This can be seen by rewriting (23) for sufficiently large L and

assuming ρ+ > ρ−:

ρA(x) =

(

1 +
ρ+ − ρ−

ρ−
x

L

)(

−
LjAρ−

D(ρ+ − ρ−)
+

(

ρ−A +
LjAρ−

D(ρ+ − ρ−)

)

e
−

ρ+
−ρ−

1−ρ−
x
)

ρ+ > ρ− (24)

The localization length

ξ =
1 − ρ−

ρ+ − ρ−
(25)

does not depend on the system size. In the limit of infinite L the relative size of the

boundary layer vanishes and the linear solution connects to the reservoir densities by a

jump discontinuity at one of the edges. For ρ+ > ρ− the exponential in (24) dominates for

small x and the discontinuity is located on left boundary. The case ρ+ < ρ− is similar, but

the discontinuity is at the right edge.

The case of equal reservoir densities ρ+ = ρ− = ρ has to be treated separately. The

self-diffusion coefficient is constant, hence, the b in (18) vanishes. Integrating (18) with

ρA(0) = ρ−

A yields the linear density profile

ρA(x) = ρ−

A +
(

ρ+
A − ρ−

A

) x

L
(26)

and a similar expression for the density of B-particles.

Fig. 3 shows the A and B particle densities obtained from Monte Carlo simulations

(symbols) and the theoretical stationary state solutions (solid lines). The explicit expressions

for the particle currents are given below. We apply the same set of reservoir densities

ρ−

A = ρ−

B = 1/3, ρ+
B = e

1+e−1+e
and ρ+

A = e−1

1+e−1+e
used in Fig. 9 of [11]. This choice is

motivated by boundary rates used in the Rubinstein-Duke model for describing the tensile

force acting at the chain ends of reptating polymers. The different lattice sizes a) L = 50

and b) L = 200 demonstrate the finite-size character of the boundary layer. The theoretical

solution does not contain an inflection point and deviates slightly from simulations in the

immediate vicinity of the boundary. Nevertheless, an interesting observation captured by

the theoretical description is confirmed. The solution has a minimum in the density profile

(although not very pronounced in the sample A-profile of Fig. 3) and, hence, as in the

Rubinstein-Duke model there exists a region where one of the particle currents does not

follow the direction of the density gradient.
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FIG. 3: Stationary state with finite slope of the colour-blind density. a) L = 50, b)

L = 100. The boundary densities are ρ−

A = ρ−

B = 1/3, ρ+
A = e

1+e−1+e
and ρ+

A = e−1

1+e−1+e
.

We conclude by analyzing the behaviour of the current and the mean particle density in

the system. Using (23), (26) and taking into account the A particle reservoir density on the
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right edge gives the current

jA =



















−D(ρ+
−ρ−)

L

ρ
+

A
ρ+−

ρ
−

A
ρ−

„

1−ρ+

1−ρ−

«L

1−
“

1−ρ+

1−ρ−

”L ρ+ 6= ρ−

− D
L2ρ

(ρ+
A − ρ−

A)(1 − ρ) ρ+ = ρ−

(27)

This has an interesting consequence. Considering large L (27) simplifies asymptotically to

jA =























−D
L

(ρ+−ρ−)ρ+

A

ρ+ ρ+ > ρ−

−D
L

(ρ+−ρ−)ρ−
A

ρ−
ρ+ < ρ−

− D
L2ρ

(ρ+
A − ρ−

A)(1 − ρ) ρ+ = ρ−.

(28)

Hence, provided a finite slope of the colour-blind profile, the individual particle currents

are proportional to 1/L, as for the single-component case, whereas for ρ+ = ρ− the currents

vanish proportional to 1/L2.

We make an interesting observation if the relation ρ−

Aρ+
B = ρ+

Aρ−

B is satisfied. For this

particular case the individual density profiles are linear and the particle currents are just

proportional to the respective density gradients (Fick’s law). If the relation does not apply

we observe a boundary layer inside which the current flows against the local gradient. Here

Fick’s law is violated.

Finally, the mean A-density in the channel can be obtained by integrating (24). Asymp-

totically for large L one finds from (28)

ρA =























ρ+

A(ρ−+ρ+)

2ρ+ ρ+ > ρ−

ρ−A(ρ−+ρ+)

2ρ−
ρ+ < ρ−

ρ−A+ρ+

A

2
ρ+ = ρ−.

(29)

The mean A-density evaluated as a function of the boundary densities may have a disconti-

nuity. Assume ρ− and ρ−

A 6= ρ+
A be fixed. When taking the limit ρ+ → ρ− coming from small

ρ+ the total density approaches ρA → ρ−

A. Taking the limit from the other site, ρA → ρ+
A.

There is a jump of the mean A-density when the colour-blind boundary densities become

equal. Since the colour-blind density is the sum of A and B densities, this implies a jump dis-

continuity also in the mean B-density. Therefore there is a first-order nonequilibrium phase
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transition in this boundary-driven lattice gas model for two-component single-file diffusion.

Such a transition is not known for boundary-driven one-component systems.
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