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Abstract

The use of laser-based optical techniques for medical imaging is an attractive alter-
native to other methods that utilize ionizing radiation. Beside being non-carcinogenic,
it is non-invasive, the equipment is transportable, and the methodology can be used to
examine properties of soft tissue. However, unlike x-ray photons, optical photons gen-
erated in the near-infrared suffer significant amounts of scattering by heterogeneous
bodies (e.g., organelles) found in biological tissue. Thus, theory is required to interpret
experimental data which appear in the form o spatially or temporally varying light
patterns on the skin surface. There is a wide range of parameters over which either
diffusion theory or the theory of lattice random walks can be called on to translate op-
tical data into medically significant information embodied in optical parameters of the
tissue. We discuss several problems in diffusion theory arising in the analysis of optical
measurements, for tissues modeled by a semi-infinite or slab geometry, having either
isotropic or anisotropic optical parameters. The measured quantities are related to the
intensity of light re-emitted on the tissue surface. A brief discussion is given related to
the telegrapher’s equation, which has been suggested as a simple way of incorporating
the effects of forward scattering. Mention is made of calculations related to layered me-
dia which frequently occur in tissues such as skull and esophagus. Finally, we briefly
discuss discrete random walk models for photon migration. These have recently been
used to provide parameters conveying information related to the region interrogated by
photons constrained to reappear on skin surface.

1 Introduction

The seminal works by Einstein and Smoluchowski, [1, 2], in understanding and general-
izing Brownian motion and diffusion, appeared near a century ago. These studies were
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motivated by problems in statistical mechanics. Early applications of diffusion theory were
therefore almost exclusively focused on the motion of matter particles dissolved in a liquid.
An early example is that of Brownian motion seen in pollen in solution which may even
have been observed by van Leeuwenhoek, the inventor of the microscope. Today the ambit
of diffusion is a much broader one. A field of applications being investigated by a large
number of scientific groups is that of the transport of photons through turbid media. A good
general, and not too technical, overview of this area of research is to be found in an article
by Yodh and Chance, [3].

One motivation for the study of many varieties of optical technology is that light, at
the intensities used for diagnostic purposes, is not carcinogenic, in contrast to those of
imaging modalities based on ionizing radiation. Consequently, when optical techniques
can be suitably adapted for uses in medical imaging, they are preferable to techniques based
on x-rays. A further motivation for the use of optical techniques based on photons in the
near-infrared (NIR) is that these are potentially sensitive to information related to metabolic
processes and blood flow. This can often enable a distinction to be made between different
types of soft tissues that may be unobservable by other imaging modalities. However, in
contrast to x-rays, photons in the NIR suffer the drawback of being significantly scattered
in tissue, which has the effect of randomizing photon trajectories and leading to a blurring
of images produced in applications.

A holy grail in the use of optical techniques is that of replacing x-ray mammography by
optical methods. To accomplish this goal it would be necessary to have a spatial resolution
on the order of millimeters. It is also necessary to generate a sufficient number of photons
at the given wavelength without increasing the laser beam intensity to a point where it poses
a danger to tissue. A first experiment in the use of optical techniques for breast imaging
was described by Cutler in 1929, [4]. Little useful information was obtained from this
early experiment because the necessary technological infrastructure simply didn’t exist at
that time. However, it did indicate the significant amount of blurring resulting from photon
scattering. A not necessarily exhaustive, but nevertheless excellent, summary of available
techniques in optical imaging up to 1997 is to be found in a review by Hebden et al, [5]. A
major update of this material has appeared in a recent review article by Gibson et al, [6].

The many potential applications of optical imaging and spectroscopy suggest that a
heavy investment in the development of suitable theory is required to optimize experimen-
tal design as well as to interpret data obtained from optical measurements. This is by no
means a trivial requirement. Even restricting oneself to a purely phenomenological analy-
sis, it is necessary to deal with a transport equation, [7], whose solution can only be found
numerically. A rigorous analysis ideally starts from a model of photons in terms of waves,
which can be shown to eventually approach a description of photon motion in terms of
diffusion in the long-wavelength limit. A lengthy and thorough discussion of some of the
subtleties involved in developing a theory of motion in a disordered medium is to be found
in an enlightening review by van Rossum and Nieuwenhuizen, [8].

Several problems will be discussed that arise in translating optical data on a surface
into useful information relating to optical properties of tissue interior to the surface. The
simplest problems require only elementary and straightforward applications of diffusion
theory. These will be generalized to deal with effects on standard experimental measure-
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ments when the tissue has optical properties that are anisotropic with respect to a boundary.
We further discuss two techniques for deriving information related to photon trajectories
which are not themselves directly observable. Our analysis will be phrased either in terms
of diffusion theory or the theory of lattice random walks, [9]-[11]. There are mainly minor
differences between the two theories, but occasionally one or the other picture is found to
be the more appropriate technique. The problems to be discussed here will be described in
the context of biomedical applications. Because literature on the subject is by now so vast,
this review can only describe a small fraction of the theory, mainly to give the reader an
idea of the kinds of questions posed by medical applications.

2 Diffusion models

2.1 Isotropic media

Three main categories of measurements in use today are (1) time-gated measurements, (2)
continuous-wave (CW) measurements, and (3) frequency-domain measurements. In the
first of these, a pulse of light generated by a laser beam enters the tissue and measurements
of light intensity due to photons re-emitted at the tissue surface are collected as a function
of time. In CW measurements a continuous beam of light impinges on the tissue surface
and the resulting reflected light intensity is measured along an external surface separating
the tissue from the environment. Such measurements are made as a function of the distance
between the source and detecting optodes. Finally, in frequency domain measurements, a
periodically modulated beam enters the tissue and the data consist of measurements of
amplitude and phase shifts as a function of frequency. Penetration depths of photons in
biological tissues may range up to approximately 100 mm but most measurements explore
considerably shorter depths . Not all of the input photons eventually reach the surface since
some are absorbed internally which means that they disappear from the system and are
never otherwise measured.

The three types of measurements just mentioned are far from exhaustive but consti-
tute the set of techniques for whose analysis diffusion-like models have been extensively
applied. Roughly speaking, this is because internal photon scattering randomizes the di-
rections of motion. This brings the central-limit theorem into play, [12], and leads to the
Gaussian propagator (in free space) which justifies the use of diffusion theory. One notable
example in which diffusion theory is inapplicable is that of Optical Coherence Tomography
(OCT) which registers effects of only a single scattering event. This technique produces
images resolved with extremely high accuracy, [13, 14], but the depth explored by the pho-
tons is quite small. It is generally believed that something on the order of ten scattering
events validates analysis based on diffusion theory. The depth of tissue generally explored
in the diffusion range is of the order of 100 mm or less, while in OCT measurements, since
photons are scattered once (approximately) it is from 2 to 4 mm.

Two geometric structures are most often used to model the tissue; a semi-infinite space
bounded by a plane (figure 1a ) and a slab (figure 1b ). Very little is known about effects of
curvature on results derivable from planar models since the mathematical analysis required
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for dealing with this problem is extremely complicated. In both models, the semi-infinite
tissue and the slab, in which the interface between the tissue and its surroundings is planar,
optical properties of the tissue are generally assumed to be homogeneous and isotropic.
Results for this simple case are needed as a backdrop for analyzing more sophisticated
models.

The simplest set of problems to be discussed require dealing with three optical pa-
rameters,µs, µa andg = 〈cos θ〉 , which are, respectively, the scattering coefficient, the
absorption coefficient, and the average of the cosine of the angle,θ, through which a pho-
ton is scattered in a single scattering event in an unbounded space. The inverse ofµs is the
average distance between successive scatterings, that ofµa is the average distance between
successive internal absorptions. Very often experimentalists combineg andµs and deal
with the so-called transport-corrected scattering coefficient,µ′s = µs(1 − g). This param-
eter combination is a crude and empirical way of incorporating forward scattering effects
into the analysis. Typical orders of magnitude of these parameters for healthy human tis-
sues or oxygenated blood obtained using laser radiation whose wavelength is between 540
and 633 nm areµs ≈ 1 mm−1, µa ≈ 0.01 mm−1 andg ≈ 0.8, [15]. The range of wave-
lengths generally used for biologically useful measurements at the present time is from
approximately 400 to 900 nm.

Figure 1: Geometric structures most often used to model the tissue. a) A semi-infinite
space bounded by a flat plane. b) A slab of finite thickness and unbounded surfaces. In
both casesρ is the distance between the laser beam and the detector.

2.2 The propagator and the light intensity

The simplest model calculation requires us to find an expression for the reflectance in a
CW experiment on a semi-infinite medium with isotropic optical properties. When optical
properties of the tissue are assumed to be isotropic the object of our calculations is that
of finding an expression for the light intensity on the planar surface as a function of the
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distanceρ separating the point at which the laser beam enters the tissue and the point on
the surface at which it leaves. Denote an arbitrary point in the tissue byr = (x, y, z) where
z > 0 corresponds to points in the tissue, and let−∞ < x, y < ∞ be the coordinates in
any plane perpendicular to thez-axis.

Let p(r; t|r0) be the propagator, i.e., the probability density for the position of the
photon,r , at timet, given that it was initially atr0. In the diffusion formulation this function
satisfies

∂p

∂t
= D∇2p− µap (1)

where, in units in which the speed of light in the tissue is equal to 1, the diffusion constant
is related to the scattering and absorption coefficients byD = [3(µ′s + αµa)]−1 whereα
is a constant whose exact value is not agreed upon (cf. [16], the references therein and
more recently in [17]), but is of the order of one. However, since for normal tissues the
ratio of µa/µ′s is of the order of 10−2, the termαµa is negligible compared toµ′s so that
D ≈ (3µ′s)

−1 is often used. Internal absorption is assumed to follow the Beer-Lambert
law which is implied in Eq.(1) so that the probability,S(t), that a photon diffuses through
an unbounded tissue for a timet without being absorbed is equal toexp(−µat). The rate
at which the photon changes direction as it is scattered isk = cµ′s. Our results will be
expressed in terms of the dimensionless timeτ = kt so that the survival probability written
in terms of dimensionless time is

S(τ) = exp(−ντ) (2)

whereν = µa/µ′s.
The interface,z = 0, is assumed to be an absorbing plane, so that for a tissue the

propagator satisfies the boundary condition

p(x, y, 0; t|r0) = 0 (3)

We note that some authors suggest the use of an extrapolated boundary condition, [18],
which sets the boundary at some other value ofze found in terms of the solution of the
Milne equation. However,this has been disputed, [19], and there is no clear evidence that
Eq.(3) leads to results that are significantly incorrect. Another possible boundary condition
has been investigated, the so-called radiation boundary condition, which is written

∂p

∂z

∣∣∣∣
z=0

= κp(x, y, 0; t|r0) (4)

whereκ is a constant, [20]. The results produced by solving Eq.1 with this boundary
condition do not differ significantly from those produced by settingκ = ∞, except at
points close to the input point where the use of a diffusion model is questionable in any
case. With this in mind, and to keep the analysis as simple as possible, we will always
use the absorbing boundary condition in Eq.(3). As the final ingredient in formulating the
diffusion model we specify the initial condition by settingr0 = (0, 0, z0) wherez0 is a
scattering length,z0 = 1/µ′s.
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Following standard practice in applications of diffusion theory, the surface intensity
will be identified with the flux found using Fick’s law

I(ρ, 0; t|r0) = −D
∂p

∂z

∣∣∣∣
z=0

(5)

in which ρ = (x, y). In our pursuit of the question of characterizing the region visited by
photons we can ask for the information obtainable from the solution to the problem as so
far stated. There are at least two functions of space which furnish some information about
photon trajectories, and which are easily found. The first is the expected time to absorption
at a distance on the surface,ρ, from the laser beam, and the second is the maximum depth
reached by the photon trajectory conditional on reaching the surface.

Let p(F )(r; τ |r0) be the propagator in an unbounded space. The propagator in the
presence of an absorbing boundary can be written in terms of this propagator as

p(r; τ |r0) = p(F )(x, y, z − z0; τ |0, 0, z0)− p(F )(x, y, z + z0; τ |0, 0, z0)

=
1

(4πDτ)3/2
exp

(
− ρ2

4Dτ
− ντ

) [
exp

{
− (z − z0)2

4Dτ

}
(6)

− exp
{
− (z + z0)2

4Dτ

}]
whereρ2 = x2 + y2. Because we have assumed that the optical properties of the tissue
are isotropic the intensity of interest is not assumed to be a point, which corresponds to the
propagator in Eq.(6), but rather the intensity detected in an annulus centered atρ. This will
be denoted byΓ(ρ; τ) :

Γ(ρ; τ) = 2πρI(ρ; τ) =
z0ρ

8 (πD3τ5)1/2
exp

(
− ρ2

4Dτ
− ντ

)
(7)

This result is the function needed to interpret data obtained either from CW or time-gated
measurements. It is seen to have a single maximum as a function ofτ. This is located at

τmax =
1

8Dν
{
√

100D2 + 16Dνρ2} − 10D (8)

Typical values of the time at which the maximum of the intensity occurs are of the order
of hundreds of picoseconds.

For healthy tissue the parameterν will generally be small, of the order of 10−2, so
that we can expand this expression aroundν = 0, retaining the lowest order term. This
simplifies the expression forτmax to

τmax ≈
ρ2

10D
(9)

so that when the scattering ratek is known andτmax is measured, the diffusion constant
can be found by plottingτmax as a function ofρ2 to find the multiplicative coefficient. The
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function measured in a CW experiment is

Γ(ρ) =
∫ ∞

0

Γ(ρ; τ)dτ =
z0

2ρ2

[
1 + ρ

√
ν

D

]
exp

(
−ρ

√
ν

D

)
(10)

While this diverges atρ = 0 the diffusion model is not correct at short distances because
of the implicit requirement that photons need to undergo a large number of collisions to
validate the use of a diffusion picture. Hence one cannot expect Eq.10 to be accurate in the
immediate neighborhood ofρ = 0.

A second quantity of interest in the context of describing the photon trajectory is the
average time for a photon to reach a distanceρ from the source. This is a possible measure
of how much of the tissue has been explored, but it is a rather crude one. Later we discuss
alternatives to this characterization. When the speed of light in tissue is assumed constant,
this function is defined by

〈τ |ρ〉 =
∫ ∞

0

τΓ(ρ; τ)dτ

/ ∫ ∞

0

Γ(ρ; τ)dτ =
ρ2

√
4Dν

[
ρ +

√
D
ν

] (11)

so that ifν is held fixed, andρ tends to infinity,〈τ |ρ〉 ≈ ρ/
√

4Dν as derived originally by
the random walk analysis in [21]. This proportionality to the first power ofρ reflects the
fact that when the internal absorption differs from zero the trajectory approaches a straight
line to minimize, as far as possible, the possibility of absorption.

Since scattering photon trajectories are random, the problem of characterizing the re-
gion interrogated by photons is of some importance. One approach to this problem is to
calculate the local time in some region of the tissue, [22]. Consider the trajectory of a
photon moving in a semi-infinite medium. In the present context the conditional density, or
conditional local time, spent at pointr = (x, y, z), of a diffusing particle that is absorbed
at R = (X, Y, 0) at timet, will be defined as the fraction of time spent atr during (0, t)
conditional on reachingR at timet. This problem was initially investigated in terms of a
lattice random walk, [23]. Here we give the result that follows in the corresponding diffu-
sion picture. Leth(r|R, t) be this density. It can be expressed in terms of the propagator
as

h(r|R, t) =

∫ t

0
p(R, t− τ |r)p(r, τ |r0)dτ

tp(R, τ |r0)
(12)

Since both the numerator and denominator in this expression vanish becausez = 0 at the
pointR, it is necessary to use L’Ĥo pitals rule, [24] to evaluate the equation. Without going
into the detailed calculations, which are straightforward but tedious, we note that the local
time atz units of length from the surface reduces to

h(r|R, t) =
2z

Dt
exp

(
− z2

Dt

)
(13)

which is independent of bothR andν. Since the termexp(−ντ ) appears as a multiplier in
both the numerator and denominator of Eq.12, it cancels out. This is no longer true for CW
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measurements, since, for example, the denominator in Eq. 12 must account for the number
of photons which reachR,which must clearly be a function ofν. Similarly, ν appears in
the numerator as term shown in greater detail in [24].

2.3 Anisotropic media

The standard formulation of diffusion theory has recently been extended to take into ac-
count tissues whose optical parameters are anisotropic. This development was motivated
by the existence of tissues having this property such as skin, [25], white matter in the brain,
collagen, and dentin, [26]. The extension of the theory in the diffusion framework replaces
the single diffusion constant by a3 × 3 diffusion matrix as first suggested by Heino, Ar-
ridge and Sommersalo, [27]. This is based on a heuristic argument, but also can be derived
directly from a continuous-time random walk (CTRW) picture, [9]. Further work in this
area was done in [28] and [29], which discusses the problem of estimating the angular
dependence of optical parameters in terms of surface intensity measurements.

The analysis itself is straightforward, except for the requirement that the resulting equa-
tions must satisfy the boundary conditions. We outline the analysis for time-gated measure-
ments made on a semi-infinite medium. Figure 2 is a schematic diagram of an anisotropic
system, drawn for simplicity in two dimensions. The optical parameters lie along the
dashed lines which are at an angleθ with respect to thez-axis. Describing the system
necessitates utilizing two sets of coordinates. In the laboratory, or observable coordinates a
point is denoted byr = (x, y, z) and in the skewed coordinates, defined by the anisotropy
of the optical parameters, a point is denoted byr′ = (x′, y′, z′). For simplicity we consider
only the special case in which the diffusion matrix is

D′ =

 Dx′ 0 0
0 Dx′ 0
0 0 Dz′

 = Dx′

 1 0 0
0 1 0
0 0 B

 (14)

whereB = Dz′/Dx′ is a measure of bias, so thatB = 1 corresponds to an isotropic
medium.

The anisotropy is embodied in two angles,ϕ and θ, whereϕ represents a rotation
around thez axis whileθ is an angle of rotation around thex′ axis as illustrated in figure 2.
We will use a compact notation for the trigonometric functions by writingcθ = cos θ, sθ =
sin θ, andtθ = tan θ. The two coordinate systems are related by a linear transformation
r′ = MθMϕr where

Mθ =

 1 0 0
0 cθ sθ

0 −sθ cθ

 , Mϕ =

 cϕ sϕ 0
−sϕ cϕ 0
0 0 1

 (15)

The diffusion equation, written in skewed coordinates is

∂p

∂τ
= ∇′ ·D·∇′p− ντ (16)
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Figure 2: Schematic diagram of an anisotropic system, drawn for simplicity in two dimen-
sions. The optical parameters lie along the dashed lines which are at an angleθ with respect
to thez-axis.

which is to be solved subject to the initial conditionr0 = (0, 0, z0) in laboratory coor-
dinates orr′0 = (0, z0sθ, z0cθ) in the skewed coordinates. The solution is also required
to satisfy the boundary conditionp(r; τ |r0) = 0 at z = 0 in laboratory coordinates. By
appealing to the rotation matrices in Eq. 15 we find that the plane atz = 0 is equivalent
to z′ = −y′tθ in skewed coordinates. The solution to Eq. 16 in free space, i.e., with no
boundaries, is

p(F )(r′; τ |r′0) =
1

(4πDzτ)3/2

1
B1/2

exp[− 1
4Dzτ

[(x′)2 + (y′ − z0sθ)2

+(z′ − z0c
2
θ/B)]− ντ ] (17)

To satisfy the boundary condition it is necessary to generalize the method of images by
subtracting a function from Eq.17 that satisfies both the diffusion equation and the bound-
ary condition. We therefore propose a solution which is writtenp(r′; τ |r′0) = p(F )(r′; τ |r′0)−
q(r′; τ |r′0) where the functionq will be assumed to have the form

q(r′; τ |r′0) =
1

(4πDzτ)3/2

1
B1/2

exp
{
− 1

4Dzτ

[
(x′)2 + (y′ − z0U)2

+(y′tθ + z0V )2/B
]
−ντ} (18)

whereU and V are constants chosen so that the propagator vanishes on the boundary.
Notice thatz0U andz0V can be regarded as the coordinates of image points. After some
algebra one finds thatU andV can be expressed in terms of the parameterΩ = 1−1/B as

U =
sθ

[
Ω(1 + c2

θ)− 1
]

1− Ωs2
θ

, V =
cθ

[
1 + Ωs2

θ

]
1− Ωs2

θ

(19)

Although we have written the propagator in terms of skewed coordinates, these are not
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directly observable by the experimenter, and must be transformed back into laboratory
coordinates using the rotation matrices in Eq.15.

Any information related to optical properties within the tissue is found from the in-
tensity as measured on the planar surface. In the diffusion formulation the intensity at
R = (X, Y, 0) can be calculated in terms of the propagator in skewed coordinates, leading
to

I(R; τ) = −Dz(sθ
∂p

∂y′
+ cθ

∂p

∂y′
)z′=−y′tθ

(20)

Although an exact expression is available, [29], it is quite complicated. However, the
expression can be simplified by observing that the scattering length,z0, is generally small
as compared to other lengths that describe the system. With this observation one can write
the expression for the intensity in laboratory coordinates as

I(R; τ) ≈ z0

exp
(
− 1

4Dzτ RQR′ − ντ
)

(4πDzτ)3/2 (1 + BΩc2
θ) τ5/2

(21)

whereQ is a symmetric2×2 matrix,R′ is the transpose ofR and the expression forRQR′

is
RQR′ = X2

(
1− Ωs2

θs
2
ϕ

)
+ 2XY Ωs2

θcϕsϕ + Y 2
(
1− Ωs2

θc
2
ϕ

)
(22)

The equationRQR′ = constant is a quadratic form for an ellipse, from whose location
and orientation one can derive enough relations from which the optical parameters can be
estimated, [29]. Some sample results generated for contours of equal intensity are shown
in figure 3.

More recently we have developed a comparable theory for anisotropic diffusion in a
slab geometry, [30]. In this work we considered the problem of determining the parameters
allowing one to estimate the angles defining the anisotropy, directional bias of diffusive
spreading and scattering and absorbing coefficients from data obtained from time-gated
measurements of the light transmitted through a slab of thicknessL. The proposed model
can be solved exactly, the end result being expressed as an infinite series, which although
exact, is extremely complicated. However, a physically reasonable approximation, allows
us to simplify the result to a considerable degree. As in the case of the semi-infinite model,
measured values of the surface intensity are elliptical. In addition to the effects of rotation
and change in the eccentricity of the ellipse as a function of the anglesθ andϕ observed
in the semi-infinite model (figure 3) the slab geometry also allows for a shift of the center
of the ellipse as a function of slab thickness,L. The parameters of the ellipses suffice to
estimate properties of the tissue interior.

2.4 The telegrapher’s equation

Another extension of the diffusion equation, first suggested as partially accounting for for-
ward scattering effects by Ishimaru, [31], is the telegraphers equation (TE), [32] which
dates back at least to the time of Maxwell, [33]. This equation has the form

∂2p

∂t2
+

1
T

∂p

∂t
= c2∇2p (23)
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Figure 3: Equi-intensity contours of the logarithmic intensity of the light detected at the
surface of a half-infinite anisotropic medium corresponding to an ellipse. The variation in
the shades of gray from light to dark corresponds to a change in intensity from strong to
weak. a) Rotation of the ellipse as a function of angleϕ when the angleθ is held fixed at
30◦, B = 0.1, τ = 10. b). Change in the eccentricity of the ellipse as a function ofθ when
ϕ = 0, with all other parameter values the same as in figure 1a.
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which reduces to the diffusion equation in the limitsT → 0, c2T → D as well as in the
asymptotic limit,t →∞ for arbitrary values ofc andD. The TE can be derived as a first-
order term in an expansion of the transport equation in a series by assuming that any single
scattering event results in only a small deviation of the trajectory prior to the scattering,
[34]. The TE has one advantage over the diffusion equation in that the speed of signal
transmission is finite, rather than being infinite. However, there is one difficulty in applying
the TE, to wit: rigorous boundary conditions are known only in one dimension, [35]. Even
so, the application to optical problems has been pursued with heuristic boundary conditions,
e.g., [36]. The resulting theory yields qualitative, but not quantitative, agreement with other
properties known to be valid in describing photon transport in turbid media, [37].

2.5 Layered tissues

To this point we have considered tissue models in which the optical properties of tissue
are taken to be completely homogeneous. However, there are tissues which are inherently
layered, and which require that some account be taken of this layering. Tissues which can
have significant amounts of layering are bladder, esophagus, intestine, skin and stomach.
One example which has been investigated experimentally by a number of workers relates to
measurements of oxygenation of the brain, [38]-[40]. Experiments on the degree to which
layered tissues can effect measurements of optical properties of biological tissue have been
carried out by many research groups, e.g., [41, 42].

Figure 4: A schematic diagram of a two-layered system.

It is quite straightforward to derive the equations governing reflectance or transillumi-
nation (penetration of photons through a slab), taking into account any number of layers
[43, 44]. Very often these are solvable in terms of a combination of Fourier and Laplace
transforms, but these are difficult to invert except numerically. Figure 4 is a schematic di-
agram of a two layer system in which the optical properties in both strata are assumed to
be isotropic. Several aspects of such configurations have been investigated. One of these
relates to estimating the thickness of the uppermost of the two layers in terms of data ob-
tained from CW reflectance measurements on a semi-infinite model tissue. A motivation
for this specific problem is, for example, that of estimating the thickness of a melanoma, or
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of a layer of burn tissue. This was first investigated by Nossal et al, [45] who formulated
the problem in terms of a lattice random walk requiring a numerical solution.

However, the problem can equally well be formulated in terms of a diffusion model,
[46]. The original model made the fortuitous assumption that the scattering coefficients
in the two layers were equal but had different absorption coefficients. This assumption
was also made in formulating the diffusion model. The main assumption is that the two
diffusion constants are equal,D1 = D2 = D. The diffusion equation in each of the strata
is just that given in Eq. 1, supplemented by formulae that connect the propagators in each
stratum,p1 andp2, as well as the fluxes at the interfacez = L. These require that the two
propagators and fluxes be equal at the break pointz = L. More exactly, ifni is the index
of refraction in stratumi then the propagators were assumed to satisfy

p1(ρ, L; t)
p2(ρ, L; t)

=
(

n1

n2

)2

≈ 1 (24)

since the index of refraction of a number of tissues is generally within a few percent of
1.4, [47]. The surface intensity is identified with the flux as in Eq. 5. If the two layers
have absorption coefficientsµa(i) i = 1, 2 it was found that whenµa(1) > µa(2) the
curves oflog[ρI(ρ)] separate into uniformly spaced lines as indicated in figure 5 thereby
providing a tool for estimating the widthL. When the converse holds, this uniformity of
layer separation no longer holds and there seem to be no qualitative differences between
the curves oflog[ρI(ρ)] for different L. These results followed from the simulations, a
heuristic argument, [48], and a diffusion equation analysis, [46]. It has also been recently
shown that the qualitative separation as a function ofL of log[ρI(ρ)] depends crucially on
the assumption that the diffusion constants in the two strata are equal, [49].

A very careful and detailed investigation of a multilayered model of photon diffusion
in skin was made by Schmitt et al, [50], who also studied factors influencing the estimation
of the scattering and absorption coefficients in the two layers. They used a diffusion model
taking into account the finite (circular) dimensions of the source and detector. Results of
the analysis were checked experimentally by means of phantoms. These proved to be in
very good agreement with the theoretical predictions. While it is not difficult to solve then-
layer diffusion problem in terms of transforms, the inversion taking these results back into
space and time is computationally demanding as mentioned earlier. Hence large numbers of
studies of this more general class of problems have been carried out by simulation methods.
An interesting variant of the 2-layer model has been used to estimate the absorption and
scattering coefficients and the width of the upper layer, [51]. The analysis was based on
frequency-domain reflectance, which we will not discuss in the present paper. Of course
the accuracy of the estimates depends on the number of parameters that are dealt with, so
that the analysis may be problematic when five parameters are to be estimated. A slightly
less general investigation was described based on time-resolved reflectance in which the
width of the upper layer was assumed known by Kienle and his collaborators, [52]. Their
study was based on a diffusion model, and the results were verified using phantoms.

Diffusion models are convenient for studying problems in which optical properties of
tissue are either homogeneous or close to homogeneous. They are not generally useful
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Figure 5: Layered tissue : typical curves oflog[ρ · I(ρ)] illustrating the separation due to
changing the width of the upper layer. The absorptivities used to generate the curves were
µa(1) = 0.2 andµa(2) = 0.01. The data were generated using the exact enumeration
method.

when, for example, there are small inclusions in the tissue, which is certainly a significant
class of models in the context of optical imaging schemes. Some progress can be made
in attacking these problems through the use of perturbation schemes, as in [53], but the
majority of problems which cannot easily be formulated in terms of perturbations, are
otherwise extremely difficult. In the problems reviewed in this section, the boundaries
have always been assumed to be planar. However, this is not generally true when there are
tissue inclusions. However, there are solvable models that can be formulated in terms of
random walks that incorporate the effects of inclusions, e.g., [54].

Finally, a major defect of diffusion modelling is that it cannot be accurate at very short
times because at those times there will not have been enough scattering events to validate
the implicit use of the central-limit theorem. On the other hand, the short-time regime is
most likely to provide accurate information because the perturbation of photon trajectories
are the least affected by scattering events. In this regime in time, a description of photon
trajectories requires the solution of a full transport equation which generally can only be
done numerically. In consequence, problems related to parameter estimation from data at
short times pose severe problems.

3 Lattice random walk models

3.1 The lattice propagator

In this section we briefly discuss one approach to characterizing the region explored by a
photon, basing our analysis on lattice random walks as opposed to the diffusion analysis in
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the last section. The utility of lattice random walks is that very often they can be solved
in closed form in terms of generating functions rather than by more complicated analytical
tools that involve the solution of a diffusion equation. A second reason for dealing with this
class of models is suggested by the general problem of estimating the region interrogated
by photons in the course of optical measurements. This is important both in imaging and in
applications of photodynamic therapy. As already stated, this is not a well-defined problem
in a continuum since photons are point particles, which rules out the use of a volume
to characterize what one means by the term “region”. However, a natural definition is
available in the framework of the lattice random walk, namely, the number of distinct sites
visited by ann-step random walk (or the number of distinct sites visited in timet when
time is continuous).

Properties of lattice random walks are, in many aspects, closely related to those based
on diffusion theory. For example, early techniques for solving diffusion equations numeri-
cally replaced the continuum by a lattice and allowed the investigator to solve the resulting
set of differential equations defined on points of the lattice. This is equivalent to solving
the problem of a random walk on the set of lattice points. A random walk is simply a sum
of random variables each of which represents the magnitude and direction of a single step.
This identification together with the central-limit theorem leads us to the expectation that
many photon migration problems are solvable in the framework of random walks or diffu-
sion theory. In the former it is necessary to pass to the limit of zero spacing of the lattice
points to bring the two solutions into coincidence. However, there is a class of problems
not easily formulated in terms of a diffusion model which can be phrased perfectly sensibly
in terms of random walks. Briefly stated, these are problems in which one can enumerate
a set of configurations on a lattice where there is no continuum formulation or where an
analytic solution to the continuum formulation is otherwise extremely difficult to derive.

In all applications of random walk formalism to optical problems to date, the structure
is assumed to be a simple cubic lattice, in which the lattice point is assumed to consist of a
vector of integers (figure 6). The dimensionless coordinate can be converted to the physical
coordinate,rph, by the relationrph = r

√
2/µ′s as follows from an argument given in [55].

There are two formulations of the random walk model. In the first, time is measured in
discrete units, so that a propagator is denoted bypn(r|r0) which is the probability that a
random walker, initially atr0, is found atr aftern steps have been made. Thus, the units
of time are uniformly spaced. In the CTRW the units of time are continuous and the times
between two successive steps are random variables. We do not discuss the CTRW model in
this article except to note that with suitably defined transition probabilities and probability
density of the jump time it is possible to derive an exact solution for the propagator, [56].

The formalism in both cases is based on an exact integral representation of the prop-
agator. We start from the discrete random walk in whichp(j) is the probability that the
displacement of the random walker in a single step is equal toj . We further define a gener-
ating functionp̂(θ) as

p̂(θ) =
∑
j

p(j)eij·θ (25)

where the sum is taken over all lattice points. When the steps of the random walk are
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Figure 6: Lattice random walk

independent random variables the propagator in free space can be written

p(F )
n (r|r0) =

1
(2π)3

∫∫∫ π

−π

p̂n(θ)e−i(r−r0)·θdθ1 dθ2 dθ3 (26)

When a constraint exists, such as an absorbing or reflecting plane, the expression for the
propagator must be modified to incorporate effects of the constraint. As an example, con-
sider a nearest-neighbor random walk in the presence of an absorbing boundary atz = 0.
By a nearest-neighbor random walk we mean one in which a random walker can only make
one of the six steps(x, y, z) → (x±1, y±1, z±1). If the random walk is isotropic so that
the probability of any single step is 1/6, the photons emitted at a surface point(X, Y, 0) at
stepn is pn−1(X, Y, 1|r0)/6, i.e., a probability rather than a flux, or a derivative, as is nat-
ural in continuum diffusion. There is some experimental evidence to indicate that using the
concentration near the surface as an absorbing boundary condition leads to more accurate
results in calculating the surface intensity than the use of the continuum flux, [58].

3.2 The generating function

As will be seen later, the generating function formed from the set of propagators plays an
important role in applications. The generating function with respect to step number,n, is
defined by

p̂ξ(r|r0) =
∞∑

n=0

pn(r|r0)ξ
n =

1
(2π)3

∫∫∫ π

−π

e−i(r−r0)·θ

1− ξp̂(θ)
dθ1 dθ2 dθ3 (27)

found directly from Eq. 26. Many asymptotic properties (e.g., the behavior ofpn(r|r0) at
largen) can be found by the application of the formalism of Abelian and Tauberian theo-
rems to the generating function, [57]. These relate the (small, large)-n behavior ofpn(r|r0)
to the (large, small)-ξ behavior ofp̂ξ(r|r0). A second important function in applications is
the first-passage time,fn(r|r0), which is the probability that a random walker, initially at
r0, arrives atr for the first time at stepn, never having reached that point before stepn.
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Again, for simplicity, we restrict ourselves to a random walk in free space, and show that
the generating function for thef ’s can be expressed in terms of the generating function for
thep’s. Let s be the target point. We may then express the relations between the two sets
of functions in the step-number domain as

pn(s|r0) = δn,0δs,r0
+

n∑
j=1

fj(s|r0)pn−j(s|s) (28)

This is derived by noting that a random walker arriving atsat stepn either have been there
initially, or arrived there at stepj ≥ 1 , and arrived there again aftern− j steps. Since this
equation is in the form of a discrete convolution, forming the generating function of both
sides and solving for̂fξ(s|r0) from the resulting equation leads us to

f̂ξ(s|r0) =
p̂ξ(s|r0)− δs,r0

p̂ξ(s|s)
(29)

A function that embodies the notion of the region visited by a photon, can be modeled
in terms of a lattice random walk. This is the number of distinct sites visited by a random
walk constrained to be absorbed on the surface at a specific site at stepn. The distinct
number of sites visited inn steps is a random variable, the calculation of whose properties
generally presents extremely difficult mathematical problems, [59]. However, it has been
known for at least forty years that the generating function of the first moment is relatively
simple to calculate, and, by means of a Tauberian theorem, furnishes large-n asymptotics.
We describe this calculation for a semi-infinite medium and a random walker initially at
r0 = (0, 0, 1) which is constrained to reachR = (X, Y, 0) at stepn, [60].

Let 〈Nn(R|r0)〉 be the expected number of distinct sites visited by the random walker
before reaching the surface atR, conditional on the random walker reaching that site at
stepn. The joint probability that siter has been visited at timen′ ≤ n and that it is later
absorbed at stepn will be denoted byQn(r|r0). The function of interest,〈Nn(R|r0)〉 , is
related toQn(r|r0) by

〈Nn(R|r0)〉 =
∑

r Qn(r|r0)
pn(R|r0)

(30)

The functionQn(r|r0) can, in turn, be expressed in terms of the first-passage time proba-
bilities as

Qn(r|r0) =
n∑

l=0

fl(r|r0)pn−l(R|r) (31)

since the random walker first moves from its initial position tor in l steps and from that
point to its final destinationR in the remainingn− l steps. SinceQn(r|r0) is seen to be a
convolution, its generating function,̂Qξ(r|r0), is a product,Q̂ξ(r|r0) = f̂ξ(r|r0)p̂ξ(R|r).
But, f̂ξ(r|r0) satisfies the relation in Eq. 29 so that

N̂ξ(R|r0) =
p̂ξ(r|r0)p̂ξ(R|r)

p̂ξ(r|r)
(32)
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Consider first the denominator of the last expression. This will be expressed in terms
of the generating function for the free-space propagator. The method of images allows us
to write p̂ξ(r|r) = p̂

(F )
ξ (0, 0, 0) − p̂

(F )
ξ (0, 0, 2z0). Further, sincêp(F )

ξ (0, 0, 2z0) decreases

monotonically withz0 , we will approximate top̂ξ(r|r) by droppingp̂
(F )
ξ (0, 0, 2z0) in

comparison withp̂(F )
ξ (0, 0, 0). The validity of this approximation has been checked nu-

merically for a solvable model, [60], and also leads to final results in good agreement with
simulated data. The mathematical advantage gained from this approximation is that there
is no longer anr -dependent term in the denominator of Eq. 32.

The final step in the calculation is to sum over allr . For this purpose we note the
identity

pn(R|r0) =
∑
r

pn′(R|r)pn−n′(r|r0) (33)

Thus an approximate expression for the expected number of distinct sites visited inn steps
is

〈Nn(R|r0)〉 ≈ n/p̂
(F )
ξ (0, 0, 0) (34)

which is exactly the asymptotic result for a random walk in free space, [9, 10]. This
was checked for 30,000 replications of two random walks, one starting fromz0 = 10 and
one fromz0 = 15. In both cases the slope estimated from simulated data agreed with the
prediction in Eq.34 to within 2%. While this result might appear to be surprising, it is due
to the fact that random walkers initially near the origin tend to be trapped quite rapidly,
while Eq 34 requires thatn be large.

4 Concluding remarks

We have seen that the analysis of optical methods in biomedical applications requires the
consideration of many different forms of diffusion theory as well as the theory of random
walks. The present article has only skimmed the surface of a rich collection of problems, at
least some of them unsolvable using presently available analytical techniques. For a much
wider sampling of these problems the reader is directed to the Proceedings of meetings of
the SPIE which appear yearly. The currently most pressing problem in the area of photon
diffusion is that of developing a theory valid at short times during which photon trajectories
tend to be least affected by scattering events.

We are deeply indebted to the many collaborators who have both suggested problems in
the subject area of this manuscript, and aided in solving many of them. Among whom
are Alexander Berezhkovskii, Marian Boguñà, Robert Bonner, Victor Chernomordik, Leo-
nardo Dagdug, Menachem Dishon, Israel Gannot, Amir Gandjbakhche, Shlomo Havlin,
Jeremy Hebden, Ralph Nossal, and Haim Taitelbaum.
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