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Abstract 
The study of solution dynamics is a very fundamental area of research with wide 

ranging importance from physical chemistry through to the life sciences. A common 
theme is that the interactions which control the dynamics and organization of solutions 
are generally very weak. Translational diffusion provides a non-invasive, direct and 
natural probe of the dynamics and pulsed gradient spin-echo (PGSE) NMR is a 
convenient means of measuring diffusion. This paper gives a brief introduction to 
translational diffusion as a probe of solution dynamics and of the PGSE NMR method 
before presenting some representative examples illustrating the power of diffusion 
measurements for elucidating the molecular behaviour. The use of PGSE NMR to study 
solution dynamics and organization is a very active area of research and a very large 
literature already exists, consequently, the coverage of possible applications and the 
literature cited here is not comprehensive. 
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1. Solution Dynamics and Organization 
Despite the simple attractiveness of the idea, solutions are rarely perfectly 

homogeneous. Indeed, even if a solution can be described as homogeneous it is probably 
only true over a limited temperature range or length scale. An obvious example would be 
water, which has very complicated solution dynamics by virtue of its intricate hydrogen 
bonding network. In the bulk liquid state and over a sufficiently long time-scale the 
dynamics of the water molecules is likely to appear highly random. At a shorter length 
scale and at shorter time-scale some degree of ordering is certainly apparent. As the 
temperature is reduced the dynamics change and at some point the organization in the 
solution becomes highly ordered and the phase we know as ice appears [1]. As a second 
example, at a length scale greater than nanometres the ordering of water molecules in a 
lithium chloride solution appears random. In reality, many of the water molecules are at 
least transiently confined to hydration layers around the lithium ion [2]. 

The non-purely homogenous nature and non-random dynamics of molecules confer 
extremely important and ‘non-ideal’ properties on solutions. In fact, such small scale 
solution organization is the link to large scale structures such as the formation of lipid 
bilayers which make biological systems possible. 

A common theme in solution organization is that the solutions are fragile systems. 
Consequently, any reliable method for probing them must be effectively non-invasive. 
An ideal handle for studying solution structure would be one that afforded information 
not only on the particular solution species under study, but on the local environment. 
Translational diffusion (not to be confused with mutual diffusion) provides just such a 
handle because changes in size and the surrounding environment directly affect it. NMR 
provides a non-invasive and convenient means of probing this and the method is known 
as the pulsed gradient spin-echo (PGSE) method and throughout the literature it is also 
commonly referred to as affinity NMR, DOSY, PFG NMR or NMR diffusometry. The 
method is extremely powerful and extraordinarily applicable to studying solution 
properties as is evident from the large and rapidly growing literature. Under favourable 
conditions and with the best of contemporary equipment, the PGSE method is capable of 
measuring diffusion down to about 10-14 m2s-1. Numerous reviews of a general nature 
have appeared [3-10] as well as those concentrating on specific areas of solution 
chemistry including polymer gels [11], proteins [12], surfactants [13,14], and binding 
and exchange [15-18]. 

2. Diffusion, Viscosity and Hydrodynamics 
In this section a short introduction to diffusion is given and why it provides such a 

powerful probe of solution structure and organization. Diffusion is the (stochastic) 
random thermal motion of a species (e.g., molecule or ion) and is the most fundamental 
form of transport [19-21]. At very short time-scales diffusion is a many-body problem, 
but at sufficiently large times it reduces to a single-body stochastic problem 
characterized by a single number, the self-diffusion coefficient D, viz. (see [22]) 
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where  is the location of particle i at time t and the angled brackets denote the 
ensemble average. In a rapidly diffusing liquid such as water, the concept of a diffusion 
coefficient holds for times longer than 10 ps [23]. At times shorter than this (in viscous 
systems this time would be longer than 10 ps) ‘anomalous’ diffusion may be observed. 
Under ideal conditions, the diffusion coefficient of a species can be correlated with the 
available thermal energy (i.e., kT where k is the Boltzmann constant and T is 
temperature) by way of the Stokes-Einstein equation [24,25], 

( )i tr

 

 kTD
f

=  (2) 

where f is the friction coefficient. For the simple case of a spherical particle with a 
Stokes radius (i.e., the effective hydrodynamic radius) rS (m) in a solvent of viscosity η 
(Pa s = 10 Poise) the friction factor is given by 

 
 Sf b rπη= . (3) 
 

The dimensionless parameter b reflects the boundary conditions between the solvent and 
the moving particle and (normally) ranges between 4 (the so called slip condition) to 6 
(the stick condition). From the Stokes Einstein equation it can be seen that 

1 3D Mw−∝ (with Mw = molecular weight). 
The Stokes-Einstein equation is valid only under ideal conditions in which 

diffusing species sees the solvent as a continuum and that the diffusing species are 
essentially at infinite dilution (allowing interactions between diffusing species to be 
ignored). Despite its serious limitations, the Stokes-Einstein equation provides a useful 
and intuitive framework for the interpretation of diffusion data. 

3. NMR Diffusion Measurements 
The mechanism underlying PGSE NMR diffusion measurements is surprisingly 

simple: Coherent transverse nuclear magnetization is transformed (‘encoded’) into a 
well-defined spatial structure, a helix, which is then corrupted by translational diffusion 
during a precise duration, Δ. The process that formed the helix is then reversed, but due 
to the corruption of the helix the unencoding of the coherent transverse magnetization is 
imperfect. The recovered transverse magnetization is then measured. The greater the 
diffusion during Δ, the less successful the restoration and thus, the smaller the resulting 
NMR signal. The devil lies in the technical details for encoding and decoding the 
magnetization and the theory relating the loss in NMR signal to the diffusive processes. 
 
Spatial encoding and decoding 

The spatial encoding and decoding of the magnetization in diffusion experiments is 
normally performed as part of a modified spin-echo pulse sequence (normally a Hahn-
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echo [26] or stimulated-echo [27]). Using the Hahn spin-echo as an example, 
magnetization which is initially oriented along the z-axis is converted to transverse 
magnetization by a (typically) π/2 rf pulse. This magnetization is then subject to a pulse 
of a constant magnetic field gradient which winds the magnetization into a helix along 
the direction of the gradient. This occurs since, during the gradient pulse, the Larmor 
precession frequency will change with position, and taking the gradient to be directed 
along the z-direction (i.e., gz), we have 

 
 ( ) 0 zz B gω γ γ= + z  (4) 
 

where γ is the gyromagnetic ratio and the first term represents the contribution from the 
static field (B B0) and, excluding the effects of imperfections and sample inhomogeneity 
with respect to magnetic susceptibility [28], it is the same for all spins in the sample. It is 
the second term, which is due to the applied gradient, that is of primary interest as it is 
this term which provides the spatial dependence to the Larmor frequency and thereby the 
mechanism for winding the magnetization into a helix. A magnetic gradient pulse of 
length δ and magnitude and direction g (i.e., ‘area’ = δg) leads to the definition of the 
reciprocal space vector 

 
 ( ) 12π γ δ−=q g   (m-1). (5)  
 
The application of an infinitely short gradient pulse (i.e., 0δ →  and →∞g  while 

δg remains finite) with g directed along the long axis of a cylindrical sample would 
transform the transverse magnetization into a helix with pitch q-1 (m). As it is diffusion 
that is of interest and not the effects of chemical shift evolution, a π rf pulse is applied at 
the point τ during the sequence. Since the π pulse reverses the sign of the phase change 
that has accumulated prior to its application, an identical unencoding gradient pulse is 
applied at a time Δ later as schematically represented in Figure 1. The key point is that z 
in Eq. (4) is time-dependent (i.e., z(t)) due to diffusion and thus the phase change 
acquired during the first τ period will not be counteracted by that acquired in the second 
τ period. 
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Figure 1 (A) A Hahn spin-echo based PGSE sequence in which two equal gradient 
pulses of duration δ and direction and magnitude g are inserted into each τ period. δ is 
typically in the range of 1 – 10 ms, and the separation Δ between the leading edges of the 
gradient pulses is normally in the range of 10 ms to 1 s. The second half of the echo is 
used as the NMR signal (S. i.e., the FID). It is convenient to define the echo attenuation 
as the ratio of the echo signal S(g) to that signal with no applied gradient S(0), viz. E(g) 
= S(g)/S(g=0), as it allows the effects of spin-spin relaxation to be normalized out. (B) In 
the short gradient pulse approximation the gradient pulses are assumed to be infinitely 
short but gδ is finite. (C) An example of the encoding of coherent magnetization into a 
helix (the arrows represent nuclear spins and the spiral curve is a guide for the eye), that 
would be formed by applying a gradient pulse along the long axis of a cylindrical 
sample. In the absence of diffusion, a second identical but effectively negative gradient 
pulse would completely refocus the magnetization. 

 
Technically the experiment is difficult, as the applied gradient must be constant 

throughout the sample and ideally the gradient pulses are kept as short as possible as this 
allows the effects of diffusion during the gradient pulses to be ignored. Additional 
complications arise from eddy currents that are generated from the rapidly changing 
gradients, gradient mismatch [29], convection [30,31], and radiation damping [32]. 
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Relating the PGSE NMR signal to the underlying diffusion processes 
Various means exist for relating the PGSE attenuation to the underlying diffusion 

processes (see [33] for a brief discussion). The most conceptually straightforward 
approach is that of the short gradient pulse approximation (SGP) [34]. This 
approximation makes the assumption that motion during the gradient pulse can be 
neglected such that the helix formation is not corrupted during the pulse, and leads to the 
SGP relation for the spin-echo attenuation [34] 

 
  (6) ( ) 1 02 ( )

 0 0 1 0 1( ) ( , , ) e d diE P πρ ⋅ −= Δ∫ ∫ q r rq r r r r   r
 

where  is the equilibrium spin-density and ( )ρ 0r ( )0 1, ,P Δr r  is the diffusion propagator 
[35] (or Green function [36]) derived using appropriate boundary conditions and a delta 
function initial condition. The integral is taken over all starting (r0) and finishing (r1) 
positions. Eq. (6) states that the echo attenuation is given by the Fourier transform of the 
diffusion propagator with respect to q. In the case of free isotropic diffusion, Eq. (6) 
leads to the simple single-exponential relation, 

 
 ( )2 2exp 4E qπ D= − Δ . (7) 
 
Often though, it is not technically possible to make pulses short enough so that 

motion can be neglected during the gradient pulses. Starting from the Bloch-Torrey 
equations [37] the analytically correct solution is given by [26,38] 
 

 ( )( )2 2exp 4 3E q Dπ δ= − Δ − . (8) 
 
The δ/3 term in Eq. (8) corrects for the motion during the gradient pulse. Unfortunately, 
such a simple correction for the effects of the finite duration of gradient pulses does not 
apply to more complicated translational motions [33]. 

 

4. Exchange 
Any form of molecular association can theoretically be studied using a PGSE 

measurement since the association will change the size and shape of the diffusing 
species. If the binding process is reversible and occurs on a time-scale similar to that of 
the diffusion measurement (i.e., Δ) additional information regarding the dynamics of the 
exchange process may also become evident. Consider the case of a simple two-site 
system as depicted in Figure 2, in which a low molecular weight species such as a 
ligand (L) exchanges between being located in free solution to any one of n equivalent 
binding sites on a high molecular weight species such as a protein (P) with a dissociation  
            Kd

constant Kd (i.e., PL                                                     P+L ). 
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Figure 2. A schematic diagram of a two-site binding model of a ligand (square) with a 
free diffusion coefficient of Df, in exchange with a binding site on a protein. The 
diffusion coefficient of the bound ligand is Db, and is taken as being equal to that of the 
protein. 
 
The theory relating the spin echo attenuation to the dynamics of an exchanging two-site 
system has been presented by Kärger and co-workers (e.g., see ref. [5]). The model is 
implemented in the short gradient pulse limit and it is assumed that the exchanging 
species undergoes free diffusion in both sites. The coupled differential equations 
describing the echo signal intensities at the free and bound sites are, 

 

 

2 2 2 bf f
f f

f b

2 2 2b b f
b b

b f

SdS Sg D S
dt

dS S S
g D S

dt

γ δ
τ τ

γ δ
τ τ

= − − +

= − − +
 (9) 

 
where τf and τb are the lifetimes in the free and bound sites, respectively. The initial 
conditions are given by ( )f 0 f b1tS P P= = = −  and b 0tS = bP=  where Pf and Pb are the 
populations in the free and bound sites, respectively. 
 

The solution to these equations is given by, 
 
 ( ) 2

A
A B, q D q DE q C e C e

2
B− Δ −Δ = + Δ  (10) 

 .

Diffusion Fundamentals 2 (2005) 112.1 - 112.19 7



 
where DA and DB are the apparent self-diffusion coefficients defined below and CB A and 
CBB are the population fractions (relative signal intensities) 

 

 
2

A,B b f b f2 2
b f b f b f

1 1 1 1 1 1 1 4
2

D D D D D
q qτ τ τ τ 4q τ τ

⎧ ⎫⎡ ⎤⎛ ⎞ ⎛ ⎞⎪ ⎪= + + + ± − + − +⎢ ⎥⎨ ⎬⎜ ⎟ ⎜ ⎟
⎢ ⎥⎝ ⎠ ⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭

 (11) 

 
 A 1C BC= −  (12) 
 

and 

 b b f f A
B

B A

P D P D D
C

D D
+ −

=
−

 (13) 

 
and Db and Df are the diffusion coefficients of the bound and free ligand, respectively. 
Similarly Pb and Pf are the relative populations and τb and τf (not to be confused with the 
τ delay in the PGSE sequence) are the mean residence lifetimes at each site. Thus, the 
effect of diffusion on the signal intensity when transport occurs between two, freely 
diffusing, sites (ignoring relaxation time differences between the two sites) is given by a 
superposition of exponentials [5]. 

At t = Δ and in the case of fast exchange, this reduces to the particularly simple 
single exponential form, 

 ( )2 2 2
b f obsexpE S S g Dγ δ= + = − Δ  (14) 

where 
 ( )obs b f b b1D P D P= − + D  (15) 
 

is the population-weighted average diffusion coefficient. 
 
In the case of this simple two-site model as depicted in Figure 2, the bound population is 
given by 
 

 2
bP α α β= − −  (16) 

and 

 
( )L P d P

L L

and
2

C nC K nC
C C

α
+ +

= β =  (17) 

 
where CL and CP are the total concentrations of ligand and protein, respectively. Df can 
be determined by measuring the diffusion of the ligand in protein free solution, and Db 
can normally be taken as equal to the protein diffusion coefficient since the binding of 
the ligand should have negligible effect on the diffusion coefficient of the (much larger) 
protein molecule. 
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5. Solution Dynamics and Organization Studied by PGSE NMR Diffusion 
Measurements 

Supercooled Water 
The anomalous behaviour of supercooled water is not only poorly understood, but it 

is also difficult to study due to it being in a metastable state [39]. The nature of the water 
to ice transition is of particular interest and many theoretical models have been proposed 
to understand it. The decrease in motion and increase in ordering will be reflected as 
changes in the translational motion of the water molecules. Such data also allows 
theoretical models of water to be more stringently tested. The results of diffusion 
measurements of supercooled water down to 238 K [1] and heavy water down to 244 K 
[40] are presented in Figure 3. Such data is often analysed by using the empirical Vogel-
Tamman-Fulcher (VTF)-type relationship, 

 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

=
0

0 exp
TT
BDD  (18) 

 
where T0, D0 and B are fitting constants; or the fractional power law (FPL), 

 

 

γ

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= 12/1

0
ST

TTDD  (19) 

 
where γ  (not the gyromagnetic ratio) is a fitting parameter and TS represents a low 
temperature limit where D extrapolates to zero. A good fit to the FPL equation would 
imply that there was no continuity between states. At lower temperatures the FPL 
equation provides a slightly better fit to the data. 
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Figure 3. An Arrhenius plot of the diffusion coefficients of 2H2O ( ) and 1H2O ( ). The 
results of regressing the VTF (____) and FPL equation (- - -) onto the 2H2O data is also 
shown. The parameters for 1H2O are D0 = 4.00 ± 0.87 × 10-8 m2s-1, B = 371 ± 45 K and 
T0 = 169.7 ± 6.1 K for the VTF equation and D0 = 7.66 ± 0.24× 10-10 m2s-1, TS = 219.2 ± 
2.6 K and γ = 1.74 ± 0.10 for the FPL equation. Modified from ref. [40]. 

 

Alcohol-Water 
A significant advantage of PGSE NMR over other techniques for measuring diffusion is 
its capability of determining the diffusion behaviour of many of the species in a solution 
simultaneously. The diffusion coefficient of all species in an ethanol-water solution are 
presented in Figure 4 and the Stokes radii of the ethanol and water calculated from this 
diffusion data are given in Figure 5. Such detailed data shows that ethanol can strongly 
interact with water through hydrogen bonding and implies that there is significant 
alcohol self-association at low ethanol mole fractions [41]. As expected from the Stokes-
Einstein equation (Eq. (2)) the maximum in viscosity coincides with the diffusion 
minima. 
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Figure 4. Diffusion coefficients of the alkyl ( ), hydroxyl ( ), water ( ) and water-
hydroxyl ( ) groups at 298 K at various ethanol mole fractions, xA, in the ethanol-water 
system. Modified from ref. [41] 

 

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

η (m
 Pa s)

 

rx A
=1

A
, r

x A
= 

0
W

x
A

0

1

2

3

4

5

 

 
Figure 5. The effective radii of the ethanol (rA, ) and water (rW, ) determined from 
the ethanol and water diffusion coefficients and literature values of the solution 
viscosities [42] at 298 K using Eq. (2) for the ethanol-water system. Values of the 
solution viscosity at the same xA used in the present work were determined by 
interpolation of the viscosity data (×) with a 5th order polynomial (____). The effective 
radii are normalized according to the respective pure solvent values. 
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‘Isolated’ Water Molecules 
The unusual physical properties of water largely results from long-ranged structural 
correlations in the random and transiently hydrogen-bonded network that develops at 
low temperatures [43]. It is thus interesting to study the behaviour of isolated water 
molecules in a hydrophobic solvent. In Figure 6 the temperature dependence of the 
translational and reorientational behaviour of (17O-labelled) water measured using 17O 
NMR (determined using PGSE NMR and longitudinal relaxation time measurements, 
respectively) are contrasted with the diffusion of nitromethane in a mixture of these two 
components. The results for the water are, not surprisingly, quite different from that for 
bulk water. 
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Figure 6. A plot of the H2
17O ( ) and nitromethane ( ) diffusion coefficients and H2

17O 
correlation time, τc ( ), versus temperature in the nitromethane H2

17O mixture. The 
temperature dependence of the data sets were well described by an Arrhenius function 
(lines). From the data the activation energy for the reorientational motion was 
determined to be 7.7 ± 0.1 kJ mol-1, similarly the activation energies for H2

17O and 
nitromethane diffusion were found to be 10.0 ± 0.3 kJ mol-1 and 9.7 ± 0.2 kJ mol-1, 
respectively. For comparison, the diffusion data for pure H2O ( ) is also included. 
Modified from refs. [1,44]. 
 

Surfactants 
Diffusion measurements have found a great deal of application in the study of 
surfactants due to their sensitivity to molecular organization and consequently for 
determining parameters such as the critical micellar concentration (cmc). An associating 
surfactant system is typically modelled using a two-site exchange model. In this case, 
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and assuming fast exchange the observed diffusion coefficient is expressed as a 
population weighted average between “free” and “bound” (i.e. surfactants in micelles) 
surfactant (i.e., see Eq. (15)) [13]. An example of determining the cmc from diffusion 
data is given in Figure 7. 
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Figure 7. Determination of the cmc of sodium dodecyl sulfate (SDS) in D2O from NMR 
diffusion measurements as a function of surfactant concentration (c). The break in the 
data at c = 0.2wt% represents the cmc. Modified from ref. [45]. 

 

Ionic Liquids 
Room-temperature ionic liquids (RTIL), i.e., room-temperature molten salts, are 

non-flammable, have negligible vapor pressure and high ionic conductivity and are 
currently of great interest due to their potential application to devices such as solar cells, 
fuel cells, double-layer capacitors, and batteries. However, the ion net mobility and the 
ionic conduction mechanisms are not well understood, because the electrolytes are 
composed completely of ions without any neutral organic solvents. PGSE NMR has an 
important role to play in clarifying such mechanisms, especially since it allows the 
translational motion of all of the species present to be studied. In Figure 8 the 
temperature dependence of the self-diffusion of the components of an RTIL (1-ethyl-3-
methyl-imidazolium tetrafluoroborate; [emim][BF4]) including a lithium salt (LiBF4) are 
presented. The results show that [emim] diffuses slightly faster than BF4 even though the 
molecular size of [emim] is slightly larger than that of BF4; this implies that BF4 does 
not diffuse as a single ion [46]. 
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Figure 8. Arrhenius plots of the self-diffusion coefficients for (a) [emim], (b) BF4 and (c) 
Li. The salt concentrations are noted in the figure. Modified from [46]. 
 
 

Drug Binding 
In the simplest case, performing a single diffusion measurement of a ligand (e.g., a 

drug molecule) in the presence of a protein can provide information as to whether the 
drug binds to the protein. However, by performing a series of measurements with 
various ligand concentrations it is possible to determine the binding constant. An 
example of an NMR diffusometry study of a drug, salicylate, binding to the protein, 
serum albumin, is given in Figure 9 and analysis of the data from a series of such 
experiments using the two-site binding model (Eqs. (15)-(17)) is given in Figure 10. The 
poor fit to the entire data set indicates that the model is too simplistic and/or the 
assumptions inherent in the model are not met. At the highest drug concentration it is 
likely that there is self-association of both the drug and the albumin. 
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Figure 9. 500 MHz 1H PGSE spectra of 80 mM salicylate and 0.5 mM bovine serum 
albumin in water at 298 K. The spectra were acquired using the Hahn spin-echo based 
PGSE-WATERGATE sequence in which the usual π rf pulse is replaced by a binomial π 
pulse as in a WATERGATE sequence to provide solvent suppression. The (residual) 
water resonance gives rise to the peak at 4.7 ppm and the three peaks to the left originate 
from salicylate (from left to right: H-6, H-4, H-3/H-5; also see inset). Modified from ref. 
[47]. 

 

0.00 0.01 0.02 0.03 0.04 0.05
5.6

5.8

6.0

6.2

6.4

6.6

6.8

7.0

 

 

D
 (×

 1
010

  m
2 s-1

)

CP/CL

 
Figure 10. Diffusion of salicylate in 0.5 mM bovine serum albumin measured using 1H 
PGSE NMR at 500 MHz. The errors in each measurement are typically less than 1%. 
The curve is the result of regressing the two-site model (i.e., Eq. (15)) onto the data 
(excluding the highest salicylate concentration) giving Kd = 0.030 ± 0.004 M with n = 33 
± 3. Modified from ref. [47]. 
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Protein Association 
Protein association phenomena are necessary steps in pharmacology, protein 

aggregation and crystallisation [48-51]. Except at very low concentrations, many 
proteins are in some equilibrium between different aggregation states (e.g., monomer ↔ 
higher oligomer). The ‘environment’ (e.g., macromolecular crowding, hydration, 
counterions, pH, temperature) around the protein molecules modulates the interactions 
(e.g., electrostatic [52-55] and hydrophobic hydration [41]) that control association. But 
despite a long history of study, the extent, kinetics and mechanisms remain poorly 
understood (e.g., see ref. [56]), and generally only empirical rules exist on the choice of 
solvent, pH, ionic concentration and choice of salt (e.g., the Hofmeister series) in 
explaining how to modulate biomolecular association [57]. In Figure 11 the change in 
the average molecular weight with time of lysozyme oligomers still in solution (NB as 
the lysozyme oligomers increase in size they gradually become NMR invisible due to 
shortening spin-spin relaxation times) in aggregating lysozyme solutions is presented for 
four initial lysozyme monomer concentrations. Because the measurements were 
conducted at reasonably high protein concentrations, self-obstruction (i.e., ‘crowding’) 
effects can be expected. Hence, the diffusion coefficients are not only reduced on 
account of monomers associating to form higher oligomers but also because of 
obstruction. Thus the PGSE experiment gives weighted average diffusion coefficient 
including the effects of crowding, CD . The diffusion data was obtained from PGSE 
NMR diffusion measurements and then recast in terms of the average molecular weight 

CMw using the Stokes-Einstein equation (Eq. (2)). This data provides a means for 
understanding the crystal sizes that result from different initial protein concentrations 
[58].  
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Figure 11. The time dependence of the average molecular weight including the effects of 
crowding, CMw determined from PGSE NMR measurements of four different 
lysozyme samples with different initial (i.e., monomer) concentrations (3 mM, ; 5 
mM, ; 6 mM, ; 7 mM, ) at pH 6 and 298 K in 0.5 M NaCl. At long times the 
values plateau out to a value just slightly greater than that expected for a monomer. 
Modified from ref. [58]. 
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