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Abstract 
Pulsed Gradient Nuclear Magnetic Resonance provides direct insight regarding the 
translational motion of spin-bearing molecules. These methods gain a second dimension 
when the simple gradient pulse pair is enhanced by a second pair. Where the motion 
encoding of the two pairs is opposite, flow effects are removed from the echo attenuation, 
making it possible to measure diffusion in the presence of shear flow, or to measure the 
stochastic part of dispersive flow, and in particular the velocity auto-correlation function.  
Where the gradient pulse pairs are stepped in independent dimensions, two-dimensional 
experiments become possible. One class (Fourier-Fourier) is the Velocity Exchange 
(VEXSY) experiment in which flow velocities may be correlated at different times. 
Another class (inverse Laplace-inverse Laplace) is the diffusion correlation (DDCOSY) 
or diffusion exchange (DEXSY) experiment. This approach has proven of particular 
value in ascertaining local anisotropies in globally isotropic systems, as well as in the 
model-free measurement of exchange effects.  
 
 
1. Introduction 
In this year of 2005 we celebrate the achievement of Albert Einstein in elucidating 
Brownian motion and giving us a new mathematical description for self-diffusion (1). In 
addition to explaining the role of thermal energy in determining diffusion, Einstein 
reformulated Fick’s Law in statistical terms, giving us the relation 
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where  is the probability of finding a particle at position r at time t. Using a 
propagator to describe the probability that a particle starting at r would 

move to r’  after time t, and noting Ψ , Fick’s law can 

be rewritten 
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Under the initial condition Ps (r | ′r ,0) = δ ( ′r − r) , the solution to Fick’s law for a 
freely diffusing particle, also obtained by Einstein, was 
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 Ps (r | ′r , t) = (4π Dt)−3/2 exp(−
( ′r − r)2

4Dt
)    (3) 

 
The science of self-diffusion measurement gained an enormous boost with the discovery 
of the NMR spin echo by Erwin Hahn (2). Hahn had sufficient insight to realise that this 
spin echo amplitude would be affected my molecular self-diffusion, a fact that was 
brought to realisation through the work of E.O. Stejskal and J.E. Tanner (3).   
 
 

 

 

 
Figure 1: Basic Pulsed Gradient Spin Echo sequence 
 
 

Each magnetic field gradient pulse imparts to the nuclear spins a precessional phase that 
depends on the spatial location of the molecule which contains that spin (typically a 
proton in the hydrogen of some molecule).  Magnetic field gradients are produced by 
adding to the NMR polarising field, BB0,  an additional inhomogeneous field, B. where 
typically, |B|<<|B0|.  Consider the gradient in the component of  B along B0B

g = ∇B
,  namely 

, where the direction of Bz B0 defines the laboratory z-axis.  The Larmor 
precession of the spin in the presence of that gradient is a sum of two terms, one arising 
from the polarising field and one from the gradient, viz, ω = γ B0 + γ g.r , where r is 
the position of the spin-bearing molecule. If this gradient is applied as a pulse for a 
duration δ , then, relative to the average precession, that spin at position r, will have 
acquired an additional phase γ g.rδ .  In the spin echo experiment the phase shifts from 
each gradient pulse will be of opposite sign, because of the 180  rf pulse inserted between o
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the pulses. In NMR we represent phase shifts via complex exponential factors, 
exp(iγ g.rδ ) . 

Interestingly, Stejskal and Tanner chose to use the propagator language of Einstein’s 
formulation, in laying out the theoretical basis of the Pulsed Gradient Spin Echo (PGSE) 
NMR method, so that for rectangular gradient pulses of duration δ  and amplitude g 
separated by a time , (see figure 1) the normalised echo amplitude (ie 

), may be written 
Δ

A(0)E(g) = A(g) /
 

E(g) = P(r)exp(∫∫ − iγδg.r)P(r | r ', Δ)exp(iγδg.r ')drdr '  (4) 

 
Later Kärger and Heink (4) introduced the idea of an average propagator 

 

P(R, Δ) == P(r)P(r | r + R, Δ)dr∫     (5) 

 
so that the normalised Echo amplitude could be more simply written 
 

 E(g) = P(R, Δ)∫ exp(iγδg.R)dR     (6) 

 
From the gaussian nature of P(R,Δ)  in the case of simple unrestricted self-diffusion, 

the normalised Echo amplitude follows as . A more exact 
treatment (for example using the Bloch-Torrey equation (5)) shows that Delta has to be 
replaced by the reduced time 

E(g) = exp(−γ 2δ 2g2DΔ)

Δ − δ / 3  (the Stejskal-Tanner relation). Note that in the 
case where molecules also flow with velocity v, the echo amplitude contains both an 
attenuation term and a phase shift term, viz, . 
This means that the PGSE NMR experiment can also be used to measure flow. 

E(g) = exp(−γ 2δ 2g2DΔ + iγδg.vΔ)

 
For several decades PGSE NMR has served as a valuable tool in obtaining molecular 
self-diffusion coefficients for a wide class of molecules in the liquid state (6-11), with the 
great advantage of NMR that spectral resolution has enabled molecular specificity in the 
measurement. In its application to the study of polymer dynamics, PGSE NMR has even 
enabled the observation of internal diffusional modes, revealing reptational scaling laws 
at length scales as small as 20 nm (12). 
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Figure 2: Images of velocity and diffusion of water molecules for a semi-dilute solution 
of high molecular weight PEO (0.5% w/v in water). The profile shows the enhancement 
of polymer diffusion in the region of high shear near the walls (adapted from reference 
13).  
 
In the 1980s, PGSE NMR was adapted to NMR imaging experiments to enable spatially 
localised diffusion to be studied.  Figure 2 shows images of the flow velocity and the 
solvent water molecule self-diffusion, in the case of a semi-dilute (entangled) polymer 
solution passing through an 0.7 mm diameter pipe (13).  Also shown is a profile across 
the tube in which the polymer self-diffusion is plotted. The enhancement of diffusion 
near the walls is indicative of entanglement tube deformation and enhanced reptational 
displacements (13).  
 
Following on from the imaging perspective, it was realised that the echo attenuation in 
the PGSE NMR experiment, could contain a signature for non-Brownian motion, for 
example restricted diffusion of heterogeneous flow, and the use of a wave-vector 
formalism (q-space) (7) to describe the echo attenuation physics, greatly facilitated that 
approach.  Here the wavevector q is related to the area under the gradient pulses by (7) 
 

q =
1

2π
γδg        (7) 

The Fourier relation, equation 6, can clearly be written (replacing the integral of the 
average propagator as an ensemble average <…>) as simply 
 

 E(q) = P(R,Δ)exp(i2πq.R)dR =∫ < exp(i2πq.R) >  (8) 

 
The subject of wave-vector dependence of echo attenuation in single pulse pair PGSE 
NMR, including diffusive diffraction effects, is covered in detail elsewhere (7,14).  This 
article will focus on the use of different forms of gradient phase encoding. The single 
gradient pulse pair approach of figure 1, while offering a wide range of applications, is 
not the only mode of NMR measurement of molecular translational motion. Indeed, as 
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we shall show here, there are phenomena where higher order gradient pulse trains are 
called for. 
 
2. Self-diffusion, dispersion and velocity fluctuations 
One of the most important findings of Einstein’s 1905 paper on diffusion is that the 
(three-dimensional) molecular mean-squared displacement,  depends linearly on 
time, 

σ 2

τ ,  as .  The same Einsteinian perspective can be applied in 
considering other forms of molecular dispersion than that driven by thermal energy 
alone. Generally, dispersion is the process whereby molecules that start together in the 
same vicinity become separated as a result of translational motions.  In thermal 
equilibrium, and in the absence of fluid flow, Brownian motion alone will be sufficient to 
induce molecular separation, although, in a porous medium, the presence of fluid/matrix 
interfaces may impede this motion to the extent that apparent diffusion rates will depend 
on the length and time scales used in making the measurement.   

σ 2 (τ ) = 6Dτ

Once flow occurs in a porous medium, a number of other mechanisms for separating 
initially adjacent molecules take over and the rate of dispersion rises significantly above 
the diffusion “baseline”.  Nonetheless the ideas that underpin the theory of Brownian 
motion help to provide us with a mathematical language to describe flow-induced 
dispersion. Like diffusion, dispersion involves stochastic processes that necessitate the 
language of statistical physics. 
 
Remarkably, it is possible to show that the diffusion process may be related to the 
molecular (Lagrangian) velocities, u( , through the relation (15) t)
 

 
1
2

∂σ 2 (τ )
∂τ

= sym <u(t)u(0) >
0

τ

∫ dt     (9) 

 
where is the velocity autocorrelation function, strictly a tensor quantity. 

The symmetry operator is sym(A) = 

<u(t)u(0) >
1
2

(A + AT ) . Note that the best analogy with 

diffusion obtains if u is the stochastic velocity, ie, the variation about the mean. In other 
words, if the total velocity is v, then v=u+<v> where for a stationary ensemble, the 
ensemble and time average velocities are equal.  In the asymptotic case, τ → ∞ , we 
obtain the definition of the diffusion tensor (15,16) 
 

D* =
τ → ∞

lim sym < u(t)u(0) > d
0

τ

∫ t     (10) 

 
Note that we may define a frequency dependent dispersion tensor (17), 
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D*(ω) = sym < u(t)u(0) > exp(iωt)d
0

∞∫ t    (11) 

 
where the asymptotic dispersion tensor referred to above is the zero frequency 
component of D*(ω) . 
 
The Pulsed Gradient Spin Echo experiment can be used to measure not only Brownian 
self-diffusion, but also the dispersion behaviour of fluids (18-21).  Indeed the method is 
ideally suited to this role because it returns the true Lagrangian velocity. We may write 
the echo attenuation for the pulse sequence shown in figure 1, by using the spin 
velocities, ie 

     E(q) =< exp(i2πq. v(t)dt
0

Δ

∫ >     (12) 

 
To second order in q we may write 
 
      E(q) ≈ exp(iα )exp(−β)      (13) 

where the phase exponent , arises from the mean flow α = 2πq. < v(t) > dt
0

Δ

∫
while the attenuation exponent is 
 

   (14) 

β = 2π 2q2 < v(t)dt
0

Δ

∫
⎛

⎝⎜
⎞

⎠⎟

2

> − < v(t) > dt
0

Δ

∫
⎛

⎝⎜
⎞

⎠⎟

2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

    = 2π 2q2 < u(t)dt
0

Δ

∫
⎛

⎝⎜
⎞

⎠⎟

2

>

 
One intriguing aspect of dispersion concerns the degree to which molecular separations 
are inherently reversible or irreversible. For example, in pipe flow, the Poiseuille 
distribution has the effect of separating molecules on adjacent streamlines, in other words 

inducing a distribution of phases and an echo attenuation via the 

first term in equation 14.  However, provided the molecules remain on those streamlines, 
a flow reversal will return them to adjacency. Should they diffuse across stream lines, 
however (22), then irreversibility sets in, as revealed through the fluctuations apparent in 

2πq. < u(t) > dt
0

Δ

∫
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the correlation term . We shall see that the way to discriminate 

between the reversible and irreversible dispersive contributions is through the use of 
higher order gradient pulse trains. 

< u(t)dt
0

Δ

∫
⎛

⎝⎜
⎞

⎠⎟

2

>

 
3. Double pulse pairs and multiple pulse trains 
In 1954 Carr and Purcell (23) showed that a repetitive train of 180o rf pulses applied 
during a period of free precession, could sustain the echo envelope for an especially long 
time.  Further, they noted that when the spin bearing molecules were in flow, the echo 
train was perturbed, there being a quite different perturbation on odd and even echoes in 
the pulse train.  Consider the double PGSE pulse pair shown in figure 3.   

 

 

  

 
Figure 3:  Double PGSE NMR sequence in which pairs of gradient pulses of opposite 
sense encode are applied in succession. 
 
In this sequence the phase factors which arise for each gradient pulsed are successively 
positive, negative, negative and positive. Thus the net effect is that each successive pair 
encodes for motion in an opposite sense (7,14). Again, using velocities to describe the 
spin displacements, we may write for the echo attenuation (24,25) 
 

  (15) ED (q) =< exp(i2πq. u(t)dt
0

Δ

∫ − i2πq. u(t ')dt '
τm

τ m + Δ

∫ ) >   
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Note that the subtraction of the two phase terms means that only fluctuations in v(t) are 
apparent and all mean flow terms are cancelled.  This approach has been used to measure 
diffusion of macromolecules in the presence of heterogeneous (pipe) flow.  For small 
molecules, streamline-crossing effects (Taylor dispersion) becomes important. Codd et al 
(26) applied the double PGSE NMR method to measure the irreversible component of 
Taylor dispersion for molecules in pipe flow, as shown in figure 4, comparing with the 
much higher apparent dispersion when a single PGSE pulse pair is applied. 
 

 
Figure 4: Dispersion coefficients obtained for different encoding times for octane 
flowing in a 150 micron diameter pipe. The open circles show the effective total 
dispersion as measured from the initial attenuation of a single PGSE experiment for 
octane flowing with U = 2.6 mm s-1. The solid circles show the stochastic dispersion 
results obtained using the double PGSE variant, the three values of U being 2.6 mm s-1, 
1.6 mm s-1 and 0.7 mm s-1.  Superposed on the experimental data are the theoretical 
curves generated using a propagator eigenmode expansion approach (adapted from 
reference 26). 
 
 
In the low q limit, equation 15 may be used to yield an apparent dispersion coefficient 
(25) 
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D* =
1

4Δ
< u

0

Δ

∫ (t)u(t ') > dtdt '
0

Δ

∫ − 2 < u
τ m

τ m + Δ

∫ (t)u(t ') > dtdt '+ < u
τ m

τ m + Δ

∫ (t)u(t ') > dtdt '
τ m

τ m + Δ

∫
0

Δ

∫
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

     =
1

2Δ
< u

0

Δ

∫ (t)u(t ') > dtdt '
0

Δ

∫ −
1

2Δ
< u

τ m

τ m + Δ

∫ (t)u(t ') > dtdt '
0

Δ

∫
         (16) 
Provided the encoding time  is much shorter than the correlation time for fluctuations 
in the velocity, one obtains (14,25) 

Δ

 

< u2 > − < u(τ m )u(0) >=
2D *

Δ
    (17) 

 
In other words, the double PGSE NMR method may be used to directly measure the 
velocity autocorrelation function (VACF)  in stochastic flow, for example for fluid flow 
through porous media. Figure 5 shows VACF data obtained for flow though latex bead 
packs using this approach (25). 
 

 
Figure 5: Effective dispersion coefficients and VACF plots, obtained for flow of water in 
a bead pack of bead diameter 500 microns (adapted from reference 25). 
 
More generally, multiple pairs of gradient pulses may be applied in succession to provide 
a frequency domain analysis of fluctuations in dispersion, as shown in figure 6 (27).  The 
theory behind such experiments is described elsewhere (14,27,28). 
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Figure 6: The effective transverse dispersion coefficients, D(ω), measured at each 
frequency  f= 1/T over the range of  flow rates as shown, for a 136 μm diameter bead 
pack (adapted from reference 27). 
 
4. Velocity Exchange Spectroscopy (VEXSY) 
Of course if two pairs of gradient pulses are applied, it is possible to vary the q vectors of 
each independently (29).  Such an approach is of particular interest in the case of 
fluctuating flows.  Now the signal may be written in terms of two wavevectors, q1 and q2 
as 
 
E q1,q2( )= P2 R1,Δ;R2 ,Δ;τ m( ) exp i 2π q1 ⋅ R1( ) exp i 2π q2 ⋅ R2( ) dR1 dR2∫∫
 

          If q
(18)

1 and q2 are varied independently of each other, the echo attenuation function is now 
two dimensional in q1 and q2. Inverse Fourier transformation with respect to the two 
independent q spaces yields a two-dimensional distribution function 
P 2 R1,Δ;R2,Δ;τm( ). This function represents the two-time probability density of 
finding displacements R1 in the first and R2 in the second encoding interval of duration 
Δ, separated by a mixing time τm . P 2 R1,Δ;R2,Δ;τm( ) can be decomposed as (29) 

  P 2 R1,Δ;R2,Δ;τm( )= P 1 R1,Δ( ) PV R1,Δ | R2,Δ;τ m( )
   

(19) 
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where P 1 R1,Δ( ) is the propagator during the first interval (identical to the propagator in 

the second interval under steady state flow), and   PV R1,Δ | R2,Δ;τ m( ) is the 
conditional probability that, if a displacement by R1 occurs during the first interval Δ, 
then a displacement R2 will occur during the second time interval of equal duration to the 

first, delayed by a mixing time τm. 
 
Note that   PV  describes the conditional 
probability between displacements in the 
VEXSY case, as compared to P r | ′r , t( ) that 
relates positions at times separated by t. 
 
Figure 7 shows an example of a measurement of 

  PV R1,Δ | R2,Δ;τ m( ) for flow of water in a 
bead pack for a Peclet number (<v>l/D where l 
is the pore size and D the molecular self-
diffusion coefficient) of 9x103. The 
characteristic patterns are of particular interest 
in elucidating flow correlations. In the upper 
frame, where the mixing time is shorter than the 
fluctuation correlation time, strong velocity 
correlations are apparent.  
 
 
 
 
Figure 7: Conditional probabilities obtained 
from VEXSY experiments for water flow in a 
bead pack, with a Peclet number of 9x103 
(adapted from reference 30) 
 
 

The shape of 
  
PV Z1,Δ | Z2,Δ; τm

′⎛ 
⎝ 

⎞ 
⎠  can be 

separated into three regions (30). For small 
velocities, the contour lines lie horizontally, i.e. 
the conditional probability of finding a 

e is independent of the value before the mixing 
time. This accounts for spins which reside in quasi-static pools or which flow slowly so 
that their displacements are essentially dominated by the contributions of random self-
diffusion. For intermediate velocities, a strong correlation is found. This subset of spins 
follows streamlines but have not yet encountered geometrical obstacles which can lead to 
mechanical dispersion and therefore to a change of velocities. The fastest particles 

particular velocity after the mixing tim

Diffusion Fundamentals 2 (2005) 64.1 - 64.18 11



however, have travelled distances comparable to the structural size of the system,  in this 
case, the bead size, and have changed their direction and/or magnitude of velocity. 
 
5. Diffusion Diffusion Exchange (DEXSY) 

imensional Fourier transformation revealed In the VEXSY experiment, the inverse two-d
the propagator associated with velocity fluctuations.  In systems that are purely diffusive, 
such Fourier inversion is not necessarily the best means of revealing exchange effects.  In 
particular, consider a system in which there exists exchange of molecules between one 
compartment and another, these compartments having different local values of the self-
diffusion coefficient. In that case one might expect that the diffusion coefficient of any 
one molecule may change as the molecule exchanges between compartments.  One very 
effective means of revealing this phenomenon is via a two-dimensional experiment in 
which two pairs of gradient pulses, separated by a mixing time, are used to independently 
encode for diffusion. In essence the pulse sequence is identical as for the VEXSY 
experiment, but the data analysis is very different.  

 

 
 

igure 8: Pulse sequence used for DEXSY and VEXSY. In the case of VEXSY, where 

ith purely diffusive motion, the echo attenuation function consists of an exponential 

he process of 2-D inverse Laplace analysis is not straightforward but major advances 

  

 
F
inverse Fourier transformation is to be used,  bipolar gradients are preferable. 
 
W
decay, multi-exponential if more than two diffusion modes are present. If instead of 
Fourier inversion one uses Laplace inversion (31,32), the distribution of diffusion 
coefficients is revealed. Where 2-dimensional inverse Laplace transformation is used 
(33), one may obtain a map in which the two diffusion behaviours at the separated times 
are directly compared (34,35). This experiment is known as diffusion-diffusion exchange, 
or DEXSY. 
 
T
have been made in the last two years (33) that enable the process to be carried out 
robustly.  For an application of the method (36) see figure 9. Here a hollow polymer 
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particle with porous walls permits exchange of dextran between the particle interior 
(where the dextran diffusion is limited by restriction to that of the containment sphere), to 
the exterior water solvent, where the diffusion is free. 
 

 
 

igure 9: DEXSY experiment at two different mixing times for dext ffusion F ran di
between the interior and exterior of a porous polymer capsule (adapted from reference 
36). 
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At short exchange times, two peaks are seen on the diagonal, corresponding to the free 

. Diffusion-Diffusion Correlation  (DDCOSY) 
 on 2D Laplace inversion, is diffusion-

and sphere-bound dextran respectively. At longer exchange times off-diagonal peaks 
appear arising from dextran that have exchanged locations.  Measurement of the intensity 
of these off-diagonal peaks permits a model-free analysis of the exchange process. 
 
6
A quite different diffusion-diffusion analysis based
diffusion correlation (DDCOSY) (34,35). The DDCOSY experiment has particular utility 
for the investigation of local diffusion anisotropy in a sample that is macroscopically 
isotropic. Examples include poly-domain lyotropic liquid crystals, porous solids, polymer 
melts or semi-dilute solutions and strained elastomers. In the first example the water 
solvent may be trapped in thin (ie ~100 Å) sheets between lamellar bilayers with the 
diffusion severely restricted normal to the bilayer and relatively free within the sheet. We 
refer to such a system as locally 2-dimensional and note that the crossover length scale is 
the domain size, which may be greater than or on the order of many tens of microns. In 
the second case the porous medium may comprise a network of channels so that absorbed 
fluid is restricted to diffuse in one dimension along the channel axis. This locally 1-
dimensional system will exhibit a crossover to isotropy on a length scale corresponding 
to the representative volume, ie, the inter-pore spacing. Figure 10 shows the relevant 
local geometry in which the polar axis is used to define the direction of the applied 
gradient.  

 
Figure 10: Schematic of local diffusion anisotropy. 
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Under locally anisotropic motion the spins have diffusion coefficient D|| along a 
particular director at polar angle θ and azimuth φ, and D⊥ in the plane normal to this 
director. For convenience we can choose two representative orthogonal axes in the plane 
of D⊥ with (polar, azimuth) directors, ( π/2− θ  , φ) and (π /2, π/2− φ ) as shown. 
 

 

 

  

Figure 11: DDCOSY pulse sequence. In this experiment the two pairs of gradient pulses 
are applied in close time proximity with the aim of correlating motion along different 
axes. 
 
The DDCOSY double Pulsed Gradient echo experiment is shown in figure 11. Here the 
spin magnetisation is recycled through two successive gradient encoding pairs, G1 and G2 
whose q-vectors are defined respectively by q1 and q2, and may be applied in different 
directions, so that we can correlate the (D1,D2) distribution when the successive 
directions are respectively collinear or orthogonal (34,35). While the spread of diffusion 
coefficients in the (D1,D2) plane will reflect the isotropic distribution of directors,  it is 
clear that despite overall isotropy, the diffusion correlations will fundamentally differ 
under local anisotropy.  The problem shown in figure 10 has an analytic solution for the 
echo attenuation,  
 
 
E(G1z ,G2z ) = dcosθ exp(−(q1z

2 + q2z
2)Δr

0

1

∫ [D|| cos2 θ + D⊥ sin2 θ]) 
 
 

E(G1z ,G2x) = d cosθ exp(−q1z
2Δr

0

1

∫ [D|| cos2 θ + D⊥ sin2 θ])

                       x (2π )−1 dφ
0

2π

∫ exp(−q2x
2Δr[D|| sin2 θ cos2 φ + D⊥ sin2 φ + D⊥ cos2 θ cos2 φ])

(20) 
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These equations predict characteristic patterns for different local anisotropies.  

 
 
Figure 12: Diffusion-diffusion patterns in 40% C10E3/water are shown for the 
E(G1z,G2z) experiment (which yields diagonal spectra) and the experiment E(G1z,G2x) for 
which a distinct off-diagonal pattern is seen. It is apparent that D⊥ = 0.1D||  and D|| = 
0.1D⊥  respectively (adapted from reference 35),  
 
A test of the DDCOSY method is shown in figure 12, using the pulse sequence of figure 
8 on a 40% w/w sample of the polydomain lamellar phase of the lyotropic liquid crystal, 
C10E3 in water. A DEXSY experiment carried out on the same system using collinear 
gradient pulses dramatically reveals the migration of water molecules between the local 
domains. These experiments indicate the potential of the DDCOSY and DEXSY 
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experiments to elucidate diffusion anisotropy and diffusion fluctuations in porous media 
and soft matter.   
 
7. Conclusion 
This review sets out to show how double PGSE NMR methods may be used to observe 
correlations and fluctuations for both stochastic flow (dispersion) and for diffusion  
within and between compartments or domains in anisotropic soft matter of porous media. 
Of course, the 2-dimensional approach is experimentally time consuming, with data 
acquisition being on the order of hours. The Inverse Laplace analysis must be treated 
with due care and considerable caution. Finally, the importance of long relaxation times 
in the case of exchange experiments is obvious. 
 
Of course, such 2-D methods are not restricted to diffusion alone. Indeed there are a 
number of experiments performed where both diffusion and the flow propagator have 
been correlated with T2  relaxation (33,37).   Such multidimensional approaches have 
obvious utility. VEXSY, DEXSY and DDCOSY all allow full spectroscopic analysis in 
the readout (signal-acquisition) domain, thus lending themselves to heterogeneous 
systems or molecular mixtures 
 
Finally, it is noted that the new science of Rheo-NMR requires that molecular properties 
be measured in the presence of heterogeneous flow fields. If diffusion is to be measured, 
the flow compensation is essential. The double PGSE method and the multi echo 
frequency domain PGSE method have a significant role to play in such developments. 
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