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Abstract 
The classical Einstein’s relation for the Brownian migration has a mesoscopic 

character and it deteriorates when e.g. diffusion in solids is considered in the nanoscale 
(i.e. if the diffusion distance is comparable with the atomic spacing). This behaviour is 
strongly related to the well-known diffusion paradox, predicting infinitely fast diffusion 
kinetics at short times (distances). Indeed, according to the Fick I law the gradient is 
infinite if there is a discontinuity in the density at the beginning (which is the case in 
typical interdiffusion measurements). In this paper these questions and a possible 
resolution of the above paradox will be discussed on the basis of results obtained in our 
Laboratory. 

1. Introduction 
 The subject is very deeply related to the anniversaries, celebrated by the 

diffusion community this year. First the deviations from the parabolic behaviour in ideal 
systems (where Brownian migration of particles takes place) in fact are related to the 
problem of the validity of the Einstein’s relation <R2> ∼ t; for t  0 this leads to absurd 
conclusion especially if one looks for the particle velocity [1]. This is, because the 
extrapolation of Einstein’s mesoscopic description to the microscopic level can not work 
[1]. On the other hand, and as a consequence, the Fick I law will also be less and less 
valid in the nanoscale [2,3,4]. Examples of deviations from the behaviour predicted by 
the above mesoscopic or continuum relations in the nanoscale will be reviewed here on 
the basis of simulations carried out in the framework of deterministic kinetic equations 
based on the Martin’s model [5] and experimental results obtained in our Laboratory. 
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2. Basic equations 
Let us start from a set of deterministic kinetic equations [2,3,4,6,7], obtained from the 

Martin’s model [5], in which the effect of the driving forces can be generally described 
by the εi/kT parameter present in the expression of atomic fluxes between the i-th and 
(i+1)-th atomic layers, perpendicular to the x-axis; 

   
Ji,i+1= zv[Γi,i+1ci(1-ci+1) - Γi+1,i ci+1(1-ci)] = 

       = zvΓi{ci(1-ci+1) exp(-εi/kT) - ci+1(1-ci) exp(εi/kT)}.  (1) 
 
In this exchange model Γi,i+1 is the probability per unit time that an A atom in layer i 

exchanges its position with a B atom in the layer i+1. zv is the  vertical coordination 
number and ci denotes the atomic fraction of A atoms on plane i. It is usually assumed 
[2,3,4,6,7] that the jump frequencies have Arhennius-type temperature dependence:    

 
 Γi,i+1= νoexp[-Ei,i+1/kT]=Γiexp[(-εi)/kT] ,     

 (2) 
 Γi+1,i= νoexp[-Ei+1,i/kT]=Γiexp[(εi)/kT], 
 
with 
 

Γi=νoexp[-(Eo-αi)/kT]= Γoexp[αi/kT],       (3) 
 
where νo denotes the attempt frequency, k the Boltzmann constant, T the absolute 

temperature and Ei,i+1= Eo-αi +εi and Ei+1,i= Eo-αi-εi are the activation barriers (Eo is a 
composition independent constant including saddle point energy as well) which  must be 
chosen to fulfill the condition of detailed balance under steady state (Ji,i+1= Ji+1,i = ∂ci/∂t 
=0). There are many choices of Ei,i+1, which fulfil this condition [5]. For instance the 
following choices  

 
αi= [zv(ci-1+ci+1+ci+ci+2) + zl(ci+ci+1)](VAA-VBB)/2   (4) 

 
εi= [zv(ci-1+ci+1-ci-ci+2) + zl(ci-ci+1)]V,     (5) 

 
satisfy it [2,3], where Vij(<0) are the nearest neighbour pair interaction energies of ij  

atomic pairs, zl is the lateral coordination number and V=VAB-(VAA+VBB)/2 is the solid 
solution parameter proportional to the heat of mixing. For phase separating systems V>0. 
The parameter M=mkT/2Z determines the strength of the composition dependence of the 
transition rates [8] in a homogeneous alloy. It can be estimated, e.g., from the nearest 
neighbour pair interaction energies of ij atomic pairs, Vij, as M=(VAA-VBB)/2, or can be 
deduced from the composition dependence of the diffusion coefficients [8]: 
D(c)=D(0)exp(mc). For example, m is about 10 and 16 in the Ni-Cu and Mo-V systems, 
respectively, which corresponds to m’=mloge=4-5 and 7 orders of magnitude change in 
the whole composition range.  
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In the above model, εi∼V and thus (5) measures the effect of the chemical driving 
force, F=kTgrad{lnγ}, where γ is the activity coefficient which can be expressed by V in 
the usual way (kTlnγ is the contribution to the chemical potential, μ, related to the 
deviation from ideal solution behaviour: lnγ≈V) [9]. Till now the effect of such driving 
force was only investigated on the nanoscale and only very recently some considerations 
were published on the effect of large stress (pressure) gradients [9, 10].  

In general, in the presence of any driving force F=-grad u (u is the potential energy) 
the work done by the force over the distance between the atomic planes, a, is given by 
2εi=Fa. Indeed, the form of equations (2) corresponds to the usual energy diagram for 
diffusing atoms under the influence of a potential gradient Δu/a (see e.g. Fig.1 in [11] or 
Fig.3.3 in [12]) and the change in the energy barrier of the jump is εi. In the following we 
will use εi in this, extended, sense. 

From rearrangement of (1) one obtains [9]: 
 

 j = aJi,i+1/Ω =  (D/aΩ){2cici+1) sinh (εi/kT) - ci+1exp(εi/kT) + ciexp(-εi/kT)} (6) 
 

where the notation D=zva2Γi for the diffusion coefficient has been introduced. Now, it 
was also shown in [9] that the continuum form of (6), making a Taylor series expansion 
of the composition up to the third order, has the form 

 
j = (zvaΓi/Ω){2η sinh(εi/kT) -β[exp(εi/kT) + exp(-εi/kT)]}   (7) 

 
where 
  η= c2-c –(1-c)(a/2)2∂2c/∂x2 -[(a/2)∂c/∂x]2 + [{(a/2)2/2}∂2c/∂x2]2  
and 
  β=(a/2)∂c/∂x+[(a/2)3/6]∂3c/∂x3. 
 
It should be noted that – according to (4) - in general (i.e. in an inhomogeneous 

system) αi=M[c+(a/2)∂2c/∂x2] in Γi or D. This final expression needs some comments: 
according to this the diffusion coefficient is not only an (exponential) function of the 
composition, but depends on the second (or even on the fourth or higher) derivative as 
well, which can be important for large composition discontinuity (i.e. at the very 
beginning of the diffusional intermixing).     

It is important to emphasize that relation (6) (or (1)) is the general form of the 
expression of atomic fluxs, valid also on the nanoscale. From this one can get the well-
known Fick I equation by making a Taylor series expansion of the composition up to the 
first order and for negligible driving forces (εi≅0) [2,3,6]: 

 
j = -(D/Ω)grad c.      (9) 

 
On the other hand, for a homogeneous composition profile we have [9] 
 
 j = (zvaΓi/Ω){2sinh(εi/kT)}c(1– c).             (10) 
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Furthermore it can be shown that for εi/kT<<1 - and using the relation [-ci-1-
3ci+1+3ci+ci+2]=a3∂3c/∂x3, obtained from the Taylor expansion of composition up to the 
third order, neglecting already the second derivatives of composition in writing 2c(1-
c)≅[ci(1- ci+1)+ci+1(1-ci)] – (6) leads to the classical Cahn-Hilliard type equation [2,3,6]. 

3. Results of simulations and experiments  

3.1. Homogenization starts with the shift of the interface 
 

Fig.1: Concentration distributions at different times in Mo-
V system ( m’ = 7.3) [13] at T = 1053 K and for Λ = 6 nm. 

It was obtained from simulations in [13] that in Mo/V multilayers, due to the strong 
concentration dependence of DMo=DV=D the interface between the Mo and V remains 
atomic sharp and shifts as a whole until the component with small D has not been 
consumed (Fig.1). It can also 
be seen that the diffusion is 
very asymmetrical: there is a 
fast dissolution and diffusion 
of Mo into V, but there is no 
diffusion in Mo. This 
behaviour, as it is illustrated 
in Fig. 2, was indeed 
observed in amorphous Si/Ge 
system by Auger-depth 
profiling technique [14] (in 
both systems V≅0.). This 
phenomenon is surprising at 
first sight because from a 
naïve view of the Fick I 
relation one would expect 
flattening of the originally 
sharp interface. However, as 
it was illustrated in [13], this 
behaviour qualitatively 
follows already from this law as well if the strong composition dependence of D is taken 
into account. On the other hand – as we will see below – this classical relation cannot 
predict a correct kinetics of the interface shift and only the simulations based on the 
atomistic approach gave results in accordance with the experiments.         

 

3.2. Non-parabolic shift of sharp interface in ideal systems  
The non-linearity (strong composition dependence of D) can lead to even more 

interesting results if we have dissolution of a thin film into a substrate [7]. Fig. 3. shows 
the results of simulations carried out for Ni dissolution into Cu (again the system is ideal, 
i.e. V=0). It can be seen that the dissolution starts at the interfacial layer, and until this is 
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Fig. 2: Auger depth profiles for the as-
received and annealed (at 680 K for 100
h) amorphous Si/Ge multiplayer [14]. The
Si content increases in Ge and the Si layer
shrinks.  

Fig.3: Concentration profiles for Ni
dissolution into 51 layers of Cu(111) (of
which only 20 are shown here) for different
times (given in special units [7]). 

not consumed the next layer remains complete. Thus the interface shifts step by step. This 
layer-by-layer dissolution takes place until the moving “interface” reaches the Ni layer 
just before the last. Then, due to the driving force for surface segregation, the intermixing 
will be continued by the saturation of Cu in the top layer and the change in the second 
layer will be retarded according to the segregation isotherm. The layer-by-layer 
dissolution – if the substrate is semi-infinite and the diffusion coefficient depends 
strongly on the concentration [7] – results in a periodic behaviour as a function of time: 
each plane practically dissolves, subsequently reproducing the same process. Therefore, 
the average value of v should be constant, independent of time, and the interface shifts 
linearly with time, which is in contrast to the parabolic law (v ∝ t-1/2) to be expected from 

a 

continuum model. Of course, after the dissolution of more and more layers one will have 
a transition to the parabolic dissolution. Obviously, this transition will depend on the 
value of m’ [7]. Fig. 4a. shows the position of the interface versus time, obtained from 
simulation for a semi-infinite Cu(111) substrate with 100 atomic layers of Ni. Due to the 
periodicity, mentioned above, the curve has periodic oscillations around the straight line 
fitted, but the slope of the straight line is 1 ± 8×10-4, i.e. the average shift is indeed linear. 
It was also shown by simulations that already for 1000 atomic layers and at longer times 
the dissolution indeed obeys the parabolic law [3,7].  

Although the oscillating character of the dissolution – because of technical difficulties 
- could not be resolved experimentally in [7], the above simulation result was confirmed 
by measuring the kinetics of the Auger signals of Ni and Cu from the top of the 8 
monolayers Ni. Fig. 4b. shows the final results for the average time evolution of the Ni 
thickness  versus time for 679 K. It can be seen that n is indeed a linear function of time 
up to the second layer.  

The layered deterministic model properly takes care of the discreteness of the lattice, 
but the effect of fluctuations is not included. A more realistic description can be achieved 
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Fig.4:.a): Position of the interface versus time for the dissolution of 100 Ni layer into Cu(111)
substrate (see also the text). b): Change of the Ni thickness at 679 K [7]. 

with a detailed Monte-Carlo study. Thus Monte-Carlo simulations were performed [3] 
with the same assumptions as in the layered deterministic model described above. The 
atomic arrangements around the moving interface (at 1000 K in Ni/Cu system [3,6]) can 

Fig.5. Cross-section of the sample at different times in two MC simulation runs [3]. The
black and gray dots represent different atoms. 
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be seen on Fig.5. It can be seen that the width of the diffusion front extends to about two 
monolayers only. The top view of the dissolving interface [3,6] also revealed that the 
shape of the moving interface was stable.  

In conclusion, after taking into account the fluctuations by MC simulation, we have 
found - similarly to the deterministic model - that the interface motion is proportional to 
time, in contrast to the square root dependence, expected from the continuum diffusion 
model. However, in contrast to the deterministic model, in the MC simulation the 
fluctuations led to a small broadening of the interface and this results in a smearing out of 
the oscillations of the interface velocity. The interface preserves its shape and in this way 
a nearly steady configuration is maintained during the dissolution and shift. 

 

3.3. Non-parabolic interface shift in phase separating system 
We have seen that the interface remained sharp on nanoscale and shifted linearly 

provided that the diffusion asymmetry was large (the diffusion was faster by several 
orders of magnitude in the substrate than in the deposit) in ideal systems. In phase 
separating systems – where the interface is sharp due to chemical reasons (phase 
separation) - it was obtained from previous computer simulations [15-17] that the 
interface displacement was proportional to the square root of the time. However, in these 
simulations the composition dependence of the diffusivity (diffusion asymmetry) was 
neglected. Thus it was very plausible to study the interplay of the diffusion asymmetry 
(composition dependence of diffusion coefficient) and the phase separation tendency 
(chemical effect) in the kinetics of the interface shift during dissolution in a binary 
system with restricted solubility. In [18] we have demonstrated by computer simulations 
(in fcc structure for 111 plane; zl=6 and zv=3) how these parameters could influence the 
kinetics of the interface motion. 

 

ba 

Fig. 6: a): Calculated and experimental initial values of the kinetic exponent versus V/kT for
different m' values [18], and [19], respectively. b):  Change of kc during dissolution (m'=7,
V/kT=0.09). The more layers are dissolved the closer is the value of kc to 0.5. 
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The position of the interface was fixed to the plane with the composition 0.5 (it can 
obviously lie between two atomic planes as well). After determining this position, its 
logarithm versus the logarithm of the time was plotted. Fitting a straight line to the data 
(which implies power law behaviour: ), its slope gave the power of the function 
describing the shift of the interface (it is called kinetic exponent and denoted by k

ckty ∝
c). 

Obviously, for parabolic interface shift kc=0.5. Since we wanted to demonstrate the 
effects of the composition dependence of diffusion coefficients as well as the phase 
separation tendency on the kinetics of the interface shift, the parameters m' and V (or 
V/kT) were changed during the calculations. 

Figure 6a shows the initial values of the kinetic exponent, kc, (obtained by fitting to 
the interval corresponding to the dissolution of the first five atomic planes) versus V/kT 
for different m' values. It can be seen that kc is almost constant and, as it is expected, it is 
very close to 0.5 for small m' (weak composition dependence of the diffusion 
coefficients). At the same time, the deviation from the square root kinetics increases with 
increasing m' for a fixed value of V/kT. The deviation from the parabolic law is again a 
real "nano-effect", because after dissolving a certain number of layers (long time or 
macroscopic limit), the interface shift returns to the parabolic behaviour independently of 
the input parameters (see Fig. 6b). 

On the basis of our previous results on the linear shift of a sharp interface in ideal 
binary systems, obtained by Monte Carlo simulations, it is expected that the above 
conclusions (drawn from the deterministic model) on the non-linear interface shift in 
phase separating systems remain valid including the fluctuations as well. 

 Thus Fig. 6 reflects an interplay of two effects: i) the change of kc due to the gradient 
energy effects scaled by V/kT, ii) the change of kc due to the diffusion asymmetry 
measured by m'. This latter nano-effect – similarly to the case of the shift of the interface 
in an ideal binary system – as it can be seen in Fig.6b, should diminish for long diffusion 
distances/times. 

We have shown recently from UPS and XPS measurements [19] that during the 
dissolution of a 3 nm thick Ni layer into single crystalline Au substrate the dissolution 
kinetics indeed deviates from the parabolic behaviour and that the kc values obtained 
were in very good agreement with those estimated from the m’ and V/kT values (See Fig 
6a where points with error bars show the experimental results.)    

3.4. Sharpening of an initially diffuse interface in ideal binary systems 
Another interesting feature obtained again by the same type of model calculations and 

also by Monte Carlo technique [20] is that an initially wide A/B interface can become 
sharp on nanoscale even in an ideal system. While such a process is obvious in an alloy 
with large miscibility gap (the metastable solid solution in the smeared interface region 
decomposes and a sharp interface is formed), it is surprising at first sight in systems with 
complete mutual solubility, because according to the macroscopic Fick I law the direction 
of the atomic flux is always opposite to the direction of the concentration gradient. 
Indeed, for composition independent D, the concentration profile will gradually decay 
and only a flattening of the (sharp or broadened) interface, produced experimentally, is 
generally expected. 
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Fig.7: a): Sharpening of the initially linear concentration profile of Ni during interdiffusion
with Cu [20]. b): Interface sharpening in an A/B multilayer system. (Time units shown must
be multiplied by 106). 

The problem is interesting not only from a fundamental point of view, but has 
technological importance as well. The Ni/Cu system for example is a model material for 
giant magnetoresistance (GMR), and in these systems the abruptness of the interface, and 
the knowledge of the possibilities for their improvement, is a key point. Furthermore, 
multilayers made of Mo and V (which is also an ideal binary system) are model materials 
for X-ray mirrors, or Si/Ge systems are basic semiconductor structures, where again the 
sharpness of the interfaces can be a very important requirement for many applications. It 
is also well known that in Si-Ge multilayers grown by MBE (molecular beam epitaxy) 
the Ge/Si interface, produced by the deposition of Si on Ge, is always less sharp (due to 
the mixing driven by the segregation of Ge during the growth) than the Si/Ge interface 
[21]. Thus this effect offers a way to improve the multilayers by sharpening the interface 
and to eliminate the asymmetry by annealing at moderate temperatures for relatively 
short times. 

Figure 7a shows the dissolution of 10 atomic layers of A into a bulk B(111) semi-
infinite substrate (fcc structure with T =1000 K, VAA= -074 eV and VBB= -058 eV i.e. for 
m’=9). It can be seen that at the beginning the initially wide interface becomes more and 
more sharp.  After the sharpening process - as it is expected - the dissolution takes place 
in the same way as obtained for the shift of the initially sharp interface above: the 
interface remains atomic sharp and shifts step-by-step. The process clearly reflects the 
asymmetry of the diffusion: there is practically no diffusion in pure A and the diffusion is 
a very fast in pure B, leading to a gradual sharpening of the composition profile.   

As it was already mentioned an initially abrupt interface can remain sharp during 
diffusional intermixing in multilayers as well (see Fig. 1). Therefore, it is an interesting 
question whether an originally wide interface can also become sharper in multilayers. 
The situation differs from the dissolution of a thin film into semi-infinite substrate: the 
most important effect is that Ni atoms can saturate the Cu layer, and this leads to the 
change of the diffusivity there. However, as Fig. 7b shows, the first part of the process is 
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the interface sharpening in this case as well, after which the interface shifts step by step 
and just after consuming of the whole Ni layer complete homogenization takes place. 

The above result gives also a plausible explanation for the apparent contradiction with 
the continuum Fick I law: 

  
  j = - D grad ρ  ,               (14) 
 
where ρ is the density (ρ=c/Ω). Since in ideal binary systems D has a positive value, 

for concentration-independent diffusion coefficients, this equation should lead to 
flattening of the interface. If the concentration gradient is constant along the interface it is 
only D on which the absolute value of the atomic flux depends. Therefore the 'flux 
distribution' follows the D=D(c) function and thus even the continuum flux equation is 
capable to describe some sharpening. 

Obviously at longer annealing times - as it is expected from general thermodynamics 
- homogenization should take place. Indeed this is the case for the multilayer sample: 
although at the beginning the process decreases the gradient by filling up of layer Cu with 
Ni (and not by flattening of the interface), the final state is the completely intermixed 
homogeneous alloy. For the case of semi-infinite geometry the first part of the 
intermixing (the initial sharpening and linear shift of the interface) will be extended to 
times under which the deposited film is consumed. Of course for thick films, before 
reaching this stage, the kinetics of the dissolution will gradually change from linear to 
parabolic (as we have seen before), and this transition time will be determined by the 
''strength'' of the concentration dependence of the diffusion coefficient, m’. For m’=0 the 
''normal'' intermixing with the formation of a symmetrical diffusion profile will take 
place, while with increasing m’ the diffusion profile will be more and more asymmetrical 
and finally the above discussed effects can be observed on nanoscale. 

It is important to note that m’ is inversely proportional to the temperature (see the text 

Fig. 8: Time evolution of the composition profile of Mo, at two different normalized times,
when all the stress effects are ignored [22] (continuum approach).   
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below eq. (13)), and thus with decreasing temperature it is easy to reach those values for 
which the above non-linear effects can be observed. Indeed, as it can be checked from the 
known pair interaction energies or from the experimental D values, it is very general that 
at low temperatures m' is large enough that the sharpening of the interface is expected. 

In order to take into account fluctuations (stochastic processes) we have performed 
computer calculations by Monte Carlo simulations as well, with the same input 
parameters, and they resulted in the same behaviour, i.e. the interface became sharp in 
this case as well. Although the above calculations were carried out for direct exchange 
mechanism of atoms, the conclusions are independent of the mechanism of diffusion and 
they are expected to be valid, e.g., for vacancy mechanism as well.  

The role of stresses can be very important in processes on nanoscale. Thus the 
following question arises: how the stresses can influence the interface sharpening? This 
problem was addressed in [22].  

Since, as we have seen, in principle the continuum flux equations are also capable to 
describe the sharpening, at least qualitatively and because the treatment of stress effects is 
not well developed for the discrete, atomistic kinetic approach [23], computer simulations 
were carried out in the framework of Stephenson’s continuum model [24] for Mo-V 
multilayer system. Exponential composition dependent diffusion coefficients were used 
and it was assumed that Dv=2DMo. The modulation length of the multilayer was 6 nm, the 
initial `diffuseness' of the interface between the Mo and V layers was 1 nm. Fig. 8 shows 
the time evolution of the composition profile when all the stress effects are ignored, and 
beside the `filling-up' of V by Mo, there is indeed interface sharpening, similarly as 
observed above in the discrete model. The time scale is normalized; tr is the stress 
relaxation time (corresponding to a simple Newtonian flow; tr=6η(1-ν)/E; η the 
viscosity, E the Young modulus and ν the Poisson ratio, respectively).  

Fig.9: Time evolution of the composition
profile of Mo at t/tr =1.6x10-3 when only the
diffusional stress (DV/DMo =2) is taken  into
account [22]. The initial state is the same as
in  Fig. 8. The dotted line is the normalized
pressure (P/Y).

Fig.10: Demonstration of the influence of 
the strength of the diffusional stress: 
DV/DMo=2  solid line, DV/DMo=10 dashed 
line. 

In Fig. 9 the sample initially is stress-free and during mixing a stress peek develops 
on the Mo side close to the interface and on the V side an almost homogeneous stress 
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field (with opposite sign) appears. This is because the Mo atoms near the interface can 
easily dissolve into the V and diffuse there, whereas the V atoms practically cannot 
penetrate into the Mo (diffusion asymmetry due to the strong composition dependence of 
Di). 

In order to illustrate stronger stress effects, in Figure 10 the dashed line corresponds 
to a five times larger volume flow (the diffusion-induced stress is determined by the net 
volume flow caused by the differences of Di). It can be seen that in the second case a 
slowing down effect is already visible, but the sharpening is still present (obviously with 
a slower rate). The slowing down effect is due to the presence of the pressure peak in the 
Mo side just at the sharp interface formed (see, e.g., Fig. 9). The pressure peak shifts with 
the moving interface and there is a steady state during which the height of the pressure 
peak is almost constant (it decreases only because of the finite size of the V layer). The 
presence of the stress gradient due to this peak just compensates the difference in the 
atomic fluxes, as it is expected from the LeChatelier-Braun principle: the diffusion- 
induced stresses compensate the effect generating them. This results in a slowing down of 
the intermixing and to the slowing down of its first stage (sharpening), but still the 
sharpening takes place.  

 Indeed, by X-ray 
measurements, using the 
synchrotron facility in Berlin 
(Bessy), in Mo/V multilayers 
we could show 
experimentally the interface 
sharpening [25]. The idea is 
that the high angle satellites 
bring information about the 
sharpness of the interfaces 
(which were produced 
artificially diffuse) and 
during a special heat 
treatment at gradually 
increasing temperatures the 
change of the interface 
thickness can be determined. 
As it is shown in Fig. 11 the 
interfaces indeed became 
sharper.       
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Fig.11: Change of the thicknesses of the Mo, V layers and
the decrease of chemical sharpness of the Mo/V and V/Mo
interfaces [25] 

3.5. What is the characteristic distance of the transition from the non-classical (non-
parabolic) to the classical (parabolic) behaviour?  

As we have seen above for ideal [7] and phase separating systems [10,14] the m 
parameter (describing the composition dependence of the diffusion coefficient) and the 
solid solution parameter (proportional to the heat of mixing), V, control the above 
transition. Indeed, it was also shown in [26] that such a characteristic thickness of the 
diffusion zone, Xc, can be determined. At Xc the atomic flux in the faster B-rich β phase 
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Jβ (Dβ>>Dα, where Dβ and Dα denote the intrinsic diffusion coefficients in the β and the 
A-rich α phase, respectively) and the atomic flux across the α/β interface, JI, are equal to 
each other. For X<Xc the Jβ flux will be larger than JI, which in fact determines the 
diffusion permeability of the interface [26]: 

 
  JI=zvΓiΔc.      (15) 
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Fig.12: Calculated composition profiles at V/kT=0,09≅0 (nearly ideal system) and m =-16,11
for two different running times; a) t=t1 and b) t=67t1. It can be seen that, because of the large
diffusion asymmetry (⏐m⏐is large), the upper part of interface remains sharp and shifts. The
composition at the kink of the profile (denoted by cβ in the text) slightly increases with time.
The division of the composition profile into three regions is illustrated in a) and the
composition of the plane belonging to the “interface” is denoted by ci in the text [26]. 

Here Δc=ci-ci+1=<c>-cβ. <c> denotes the time averaged value of the composition just 
in the interface, ci during a layer-by-layer dissolution mode: each atomic plane dissolves 
subsequently – the dissolution of the next 

plane began only after the complete dissolution of the pervious one –, reproducing the 
same process [7].  Furthermore, cβ denotes the breaking point in the composition profile 
(for large V values it corresponds to the solubility limit) [26], as it is illustrated in Fig. 12. 
The idea of the derivation of a relation for Xc was simple: at very short times (small 
thicknesses of the diffusion zone) the finite permeability of the interface, determined by 
(15), will control the process (and e.g. assuming constant JI, the Stefan’s law leads to a 
constant velocity for the interface shift, i.e. the shift of the interface is linear), while for 
longer times, because the composition gradient gradually decays, Jβ will become less than 
JI, and the diffusion controls the further thickening of the diffusion zone.  Thus for Jβ the 
classical expression Jβ=-(D/Ω)gradc≅Dβcβ/Xβ was used with Dβ=zva2Γoexp(mcβ/2).     

 Now it was obtained in [26] that for a very asymmetric diffusion profile (which 
is the case here because of the strong composition dependence of D: see also Fig.1) 
Xc≅Xβ and  

 
Xβ/a={cβ/Δc}exp[(m/2)(cβ - {zv/Z +(zl+zv)(<c>+cβ}/Z})]exp(εi/kT) .  (16) 
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 Positive values of V (or εi) led to a decrease of Xc as compared to the values 
obtained for the same m with V=0. However, in that case the values of cβ and V (εi) were 
coupled via the well-know relation for the solubility limit: 

 
 cβ=(1- cβ)exp[-ZV(1-2cβ)/kT]≅exp[-ZV/kT],     (17) 

 
and thus the decrease of cβ always compensated the role of the factor exp(εi/kT) in the 

right hand side of  (8) (which is larger than 1 for positive εi).    
  Thus in [26] a natural resolution for a long-standing paradox in diffusion has 

been offered. We have shown that the growth rate of the diffusion zone (reaction layer) 
should not go to infinity with decreasing time (as t/1 ), just because the diffusion 
permeability of the interface (being sharp either because of the presence of a miscibility 
gap, or because of the large diffusion asymmetry or because there is an abrupt jump of 
the composition in the diffusion couple at the beginning) is finite. It was found that Xc

 - 
depending on the phase separation tendency and the diffusion asymmetry (measured by 
the strength of the composition dependence of the diffusion coefficients) – lies between 
0.05a and 450a, illustrating that these effects are measurable on nanoscale. 

3.6. On the atomistic meaning of the interface transfer coefficient  K 
In order to illustrate the importance of this question let us cite the last sentences 

of H. Schmalzried from the epilogue of his book [27]: “We must remain aware, however, 
that the kinetic coefficients are ad hoc parameters, unless they can be derived from 
atomistic theory….However, if the definition is correct and unique, one day we will have 
the unambiguous answer to the problem.”      

We have seen above that K is proportional to the jump frequency from the A-rich 
phase to the B-rich one. This is different from the jump frequency in the B-rich phase 
(where the jump frequencies are larger at the same temperature) just because these 
frequencies depend on the composition. If there is an abrupt interface present at the very 
beginning of the intermixing, then the interface transfer controls the flux only until the 
gradients will be large enough to establish the diffusion flux Jβ larger than JI. In fact, the 
magnitude of the finite value of JI≅K gives the permeability of the interface and it is 
determined by the m and V/kT parameters. It is important to emphasize that this 
interpretation is forced by the demand that one would like to express the fluxes by the 
classical J~ -gradρ form. In fact, the validity of Fick’s I equation gradually breakes down 
with decreasing diffusion distances and, as we have seen above, in the “improved” forms 
of the continuum expressions of the atomic fluxes higher order derivatives of the 
composition should appear. These should lead to a “slowing down” of the flux and this 
can be taken into account by the treatment presented in [26]. Thus the t/1  dependence 
of the rate of the shift will be violated on the nanoscale just because the classical 
continuum description fails and for strongly composition-dependent jump frequencies 
(for large |m| values) even a linear shift can be experimentally observed. Our results 
illustrate that the shift of the interface can be different from the parabolic behaviour just 
because the permeability of the interface is finite, and this can already lead to measurable 
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effects in the interface kinetics on the nanoscale. Thus effects of other factors (like 
problems with sluggish structural rearrangements in non-coherent interfaces, slow 
reaction) in making the atomic transfer more restraint should be additionally considered, 
but then an extra activation barrier should be included into the atomistic model 
description, which was not the case in [26]. 

4. Conclusions 
It can be concluded that the Einstein’s relation and the Fick I law are less and less 

valid on the nanoscale (as the diffusion distance becomes more and more comparable 
with the atomic spacing). This can lead to surprising, measurable effects (interface 
sharpening, non-parabolic shift of interfaces) if the composition dependence of the 
diffusion coefficient if strong. The analysis of these effects leads to an atomic 
interpretation of the interface transfer coefficient K. K measures the interface 
permeability which is always finite and this offers a plausible resolution of the well 
known diffusion paradox predicting a t/1  dependence of the rate of the interface shift. 
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