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Abstract 
In this review, which is intended as an introduction to the subject, we introduce the 
phenomenological transport coefficients in solid-state diffusion and discuss their 
structure and physical meaning. Next, we discuss the Darken, the Manning, the Moleko, 
Allnatt and Allnatt and the Heumann expressions which relate the phenomenological 
coefficients to the (measurable) tracer diffusion coefficients. Finally, we discuss the 
relationships (sum-rules) among the phenomenological coefficients themselves in 
randomly mixed systems and note their applicability for simplifying collective diffusion 
problems. 
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1. Introduction 1. Introduction 
  
In 1855, Fick introduced his famous First Law describing a linear relationship between a 
flux Ji  of a diffusing species i and its concentration gradient dCi/dx [1]: 
In 1855, Fick introduced his famous First Law describing a linear relationship between a 
flux Ji  of a diffusing species i and its concentration gradient dCi/dx [1]: 
  

dx
dCDJ i

ii −=      (1) 

 
where Di is the diffusion coefficient. Fick’s First Law is frequently insufficient as a 
condition for attaining equilibrium of species i because it does not recognize all driving 
forces, direct and indirect, acting on i. The Onsager flux equations of irreversible 
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processes achieve this through the postulate of linear relations between the fluxes and 
the driving forces, see for example [2,3]: 
 

∑=
j

jiji XLJ      (2) 

 
where the Lij are the phenomenological coefficients and Xi are the driving forces. The 
matrix of phenomenological coefficients is frequently simply called the L matrix. The 
great importance of the phenomenological coefficients stems from their independence of 
driving force. The Onsager flux equations have been used very extensively in theoretical 
treatments of collective diffusion problems such as chemical diffusion and ionic 
conductivity especially in multicomponent systems. Although the physical meaning of a 
diffusion coefficient is very well appreciated, in our experience the physical meaning of 
a phenomenological coefficient is rather less so. The purpose of this paper is to provide a 
little insight into the phenomenological coefficients, their structure, the relations between 
the phenomenological coefficient and the diffusion coefficients, and relations among the 
phenomenological coefficients themselves. The approach that we will take is one for 
non-specialists in the area. 
 
2. The phenomenological coefficients 
 
       Some insight into the phenomenological coefficients can be gained by analysing 
diffusion in a binary alloy AB where the vacancy mechanism is operating. The Onsager 
flux equations can be written from Equation 2 as: 
 
                                   JA= LAA XA +  LAB XB                                                             (3a) 
                                    

      JB= LBB XB  + LBA XA     (3b) 
 
Since atoms, either A or B, exchange with vacancies in order to diffuse, the flux of 
vacancies JV is equal and opposite to the total flux of atoms and is given by: 
 
                                    JV= - (JA+JB)     (4) 
 
We need not introduce the vacancies as a formal component here with the attendant 
driving forces because we have also made the assumption that the vacancies are always 
maintained at their equilibrium concentrations. This condition is achieved by requiring 
that sources and sinks of vacancies such as dislocations are sufficiently numerous and 
active during the diffusion process. In these equations we have introduced the diagonal 
phenomenological coefficients LAA and LBB and the off-diagonal coefficients LAB and LBA. 
According to the Onsager reciprocity theorem, LAB = LBA and the L matrix is therefore 
symmetric. We simply have three independent coefficients. 
 
       Let us now consider a ‘thought experiment’ in which the A atoms in a homogeneous 
binary AB ‘alloy’ can respond to some external force such as an electric field but the B 
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atoms cannot. This is expressed by writing the driving force on A as XA=qAE (where E is 
the electric field and qA is the positive charge (say) on A) and writing the driving force 
on B simply as XB=0. Now we might first expect that the A atoms would simply then 
drift in the field and the B atoms would not. The Onsager flux equations show indeed 
that the flux of A is given by: 
  
                                        JA=LAA qA E     (5) 
 
In other words, there is a response of A in the direction of the electric field (we will see 
later that the diagonal phenomenological coefficients are required to be positive). 
But the Onsager flux equations also show that the flux of B is not in fact zero but is 
given by: 
 
                                        JB=LAB  qA E     (6) 
 
This last equation says that B should also drift in the field even though the B atoms do 
not actually feel the field directly. It could very loosely be said that the drifting A atoms 
appear to ‘drag’ the B atoms along with them thereby giving rise to a flux of B atoms. In 
principle, the off-diagonal phenomenological coefficient LAB can in fact be either 
positive or negative depending on the details of the particular atomistic model chosen. If 
LAB were to be negative, it would mean that the B atoms would actually drift up-field 
whilst the A atoms drift down-field.  
 
       Now let us consider another ‘thought experiment’ where both A and B atoms in the 
alloy can respond equally to some external force such as an electric field. This is 
expressed by writing the driving forces on A and B simply as XA=qE and XB=qE (where 
E is the electric field and q is the positive charge (say) on both species). The Onsager 
flux equations (Equation 3a) show that the flux of A atoms is now given by: 
  
                                         JA=LAA q E + LAB q E    (7) 
 
In other words, there is a response of A to the electric field, but, depending on the sign of 
LAB, this flux could be larger (from a positive value of LAB) or less (from a negative value 
of LAB) than what it was before. The flux equations (Equation 3b) also show that the flux 
of B is now given by: 
 
                                         JB=LBB q E + LAB q E        (8) 
 
The situation for the B atoms is similar to that for the A atoms. Even though both the A 
and B atoms have the same charge and could be expected to drift in the same direction, 
this is not necessarily the case if LAB is very large and negative compared with one of the 
diagonal phenomenological coefficients. It is then possible to have, for example, a 
situation where the A atoms drift down-field but for the B atoms to actually drift up-field 
even though the direct force on the B atoms would be to send them down-field.  
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       These examples suffice for the reader to appreciate that in principle the off-diagonal 
coefficient can be responsible not only for an atomic flux in the first place but also it can 
change the magnitude and even the direction of an atom flux.  
 
       In 1905, Einstein introduced his famous equation relating the diffusion coefficient D 
to the mean square of the displacement R of a particle in a long time t [4]: 
 
                                             D*= <R2>/6t     (9) 
 
where the Dirac brackets <> indicate an average over a large number of particles. In 
Equation 9 the diffusion coefficient is understood to be a tracer diffusion coefficient and 
the implication is that we can follow each particle explicitly. This is indicated by the 
superscript * placed on D. The tracer diffusion coefficient is usually expanded for 
isotropic solid-state diffusion according to the ‘hopping model’ wherein an atom hops or 
jumps from one site to another with a long residence time at lattice sites between the 
jumps: 
 
                                             D* =  a2 n f /6t              (10) 
 
where a is the jump length, n is the number of jumps in time t and f is the tracer 
correlation factor. The latter factor was introduced first by Bardeen and Herring in 1952 
[5] to take into account the correlation in the directions of the walk taken by a particular 
atom or tracer atom because of the proximity of a vacancy. For a complete random walk 
with no correlations between the directions of tracer atom jumps then f = 1. This would 
be the case for a lone interstitial diffusing in an interstitial solid solution. On the other 
hand, if every tracer atom jump taken is immediately cancelled out by a reverse jump 
then f → 0. This would be the case if the tracer atom (in this case an impurity) happened 
to have an extremely high exchange frequency with a vacancy compared with the 
surrounding host atoms. From Equation 10 the tracer diffusion coefficient is seen to be 
the product of two parts, a correlated part, as embodied in the tracer correlation factor, 
and an uncorrelated part that contains the jump distance squared and the jump 
frequency (n / t).  
       The tracer correlation factor itself can be expanded as: 
 

                                     (11) ∑
∞

=
>θ<+=

1

)(cos21
j

jf

where is the average of the cosine of the angle between a first jump and the 
j’th succeeding jump of a tracer atom. Any given jump can be the first one since 
correlation is independent of the time origin. We would expect to approach 
zero as j → ∞ as the correlations die out, i.e. jumps that are separated by very many 
intervening jumps will be uncorrelated. In solid-state diffusion is invariably 
negative because the first jump is more likely than random to be reversed, either as the 
direct result of the vacancy still being present as the nearest neighbour to the tracer atom, 
or perhaps as a result of a re-ordering jump immediately following a disordering one, or, 

>θ< )(cos j

>θ< )(cos j

>< )1(cosθ
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of course, a combination of both. The  also alternate in sign. The 
phenomenon of tracer correlation is the subject of an extensive literature over roughly a 
fifty year period. It has been reviewed a number of times, see especially the classic 
review by Le Claire [6] and the texts [2,3]. 

>θ< )(cos j

 
       In a very important paper published in 1982, Allnatt [7] showed that the 
phenomenological coefficients can also be expressed in a form very similar to the 
Einstein Equation (Equation 9): 
 

Lii = < ℛi·ℛi>/6VkTt     (12a) 
 
Lij = < ℛi·ℛj>/6VkTt     (12b) 

 
where V is the volume of the system, k is the Boltzmann constant, T is the absolute 
temperature and ℛi and ℛj are the collective displacements of species i and species j in 
the time t. The collective displacement of a species in each case can also be thought of as 
the displacement of the centre of mass of that species. In a ‘thought experiment’, one 
imagines a volume V containing N sites on which two species A and B are 
homogeneously distributed. This might be a binary alloy. If one allows diffusion to 
occur for some time t and then calculates the displacements of the centres of mass of the 
A atoms (ℛA) and of the B atoms (ℛB) in that time t, then repeats the experiment a large 
number of times in order to produce the ensemble average <>, one would be able to use 
Equation 12 to calculate the diagonal phenomenological coefficients LAA, LBB and the 
off-diagonal coefficient LAB. In fact, this is precisely what is routinely done in Monte 
Carlo computer simulations of diffusion to calculate these phenomenological 
coefficients; see, for example, [8,9]. Finally, it is worth noting that the form of Equation 
12a means that the diagonal phenomenological coefficients must inevitably be positive. 
As we have already noted, the off-diagonal phenomenological coefficients can be 
positive or negative. It is sometimes rather loosely said that the origin of LAB is in the 
‘interference’ of the motion of A and B. This interference comes about because both A 
and B compete for the same defects. This comment covers cases such as A and B 
diffusing via different ends of a vacancy pair on cation and anion sublattices (say in an 
ionic compound). If A and B are able to diffuse completely independently in a material 
then LAB would equal zero.       
       We have already seen that the tracer diffusion coefficient can be decomposed into a 
correlated part (the tracer correlation factor) and a non-correlated part (principally the 
product of the jump distance squared and the jump frequency). It turns out that the 
phenomenological coefficients can also be decomposed into analogous correlated and 
uncorrelated parts. 
 

kTtnCafL iiiiii 6/2=      (13a) 
 

kTtnCafL ii
i

ijij 6/2)(=      (13b) 
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or, alternatively: 
 

kTtnCafL jj
j

ijij 6/2)(=      (13c) 
 
where Ci = ci N/V (ci is the site fraction of the i species and N is the total number of 
lattice sites in the system of total volume V). The correlated parts of the 
phenomenological coefficients, the fij , are termed correlation functions or, more 
commonly, collective correlation factors. In very much the same way that the tracer 
correlation factor itself can be expressed in terms of the average cosines of the angles 
between a given jump of a tracer atom and its succeeding jumps, see Equation 11, the 
diagonal and off-diagonal collective correlation factors can also be expressed in terms of 
the average of the cosines of the angle between a given jump of a species and the 
subsequent jump of the same (diagonal) species or another (off-diagonal) species [10]. 
The diagonal correlation factors are given by (c.f. Equation 11): 
  

∑
∞

=
>θ<+=

1

)(cos21
m

m
iiiif      (14) 

 
where  is the average of the cosine of the angle between some jump of  an 
atom of species i and the m’th succeeding jump of the same or any other atom of species 
i. Similar to the tracer case discussed above for , the quantity  is 
invariably negative. This is discussed in a little detail below. The expressions for the off-
diagonal correlation factors are a deal more complicated in notation but they are 
structurally related to Equation 14. For simplicity, they are given here only for a binary 
system: 

>θ< )(cos m
ii

>< )1(cosθ >< )1(cos iiθ

 

∑∑
∞

=

∞

=
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1

)(

1

)()( coscos
m
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m

m
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A
AB nC
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∞
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m

m
BA

m
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AB
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where is the average cosine of the angle between any given jump of the A 

species and the m’th succeeding jump of the B species and analogously for . 

>θ< )(cos m
AB

>θ< )(cos m
BA

       It is instructive to compare the nature of the well-known tracer correlation effect 
with the collective correlation effect. Consider the hexagonal lattice in Figure 1a. Here, 
all of the atoms are chemically A atoms. We assume that the atom shown as a hatched 
circle is a tracer of the A species and that it and the vacancy have just exchanged places. 
The conventional basic argument to describe the tracer correlation effect notes that 
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because the vacancy is still neighbouring to the tracer after a given  jump of a tracer, the 
tracer will then have a greater than a random probability (i.e. greater than 1/6 here) of 
reversing its next jump. This leads of course to being negative as noted 
earlier. Collective correlation is rather different. Let us again assume that the tracer atom 
(which is of the A species) and the vacancy have just exchanged places. The next jump 
of the A species clearly can be any one of the atoms in Figure 1a since they are all A 
atoms including the marked one. Accordingly, in this example there can be no 
correlation in the jumps of the A species and =0. It is also worth noting too 
that the jumps of the A species mirror those of the vacancy. 

>< )1(cosθ

>< )1(cos AAθ

       Now let us consider Figure 1b. The situation is very similar to the one just discussed 
except that now several B atoms are present. For simplicity, we will assume that the B 
atoms have exactly the same exchange frequency with the vacancy as the A atoms. 
Again we will assume for convenience that one of the A atoms (shown as hatched circle) 
is a tracer of A and has just exchanged with the vacancy. The mere presence of the B 
atoms means that the possibilities for the next jump of the A species are now reduced. In 
fact, the more B atoms that are present the fewer the possibilities there are for an A 
species jump. But the tracer A atom must still be there however. Because of this, the 
probability for that particular A species atom to jump as the next A species jump is 
enhanced. This has the effect of making  negative. The more B atoms that 

are present, the more negative  becomes. In the limit, where all of the A 
atoms have been replaced by B atoms except for the tracer one, the next A species jump 
can only be that tracer A atom. At this point, the collective correlation factor of the A 
species f

>< )1(cos AAθ

>< )(cos m
AAθ

AA now simply becomes synonymous with the tracer correlation factor for the A 
atoms, fA. 
 

 
 

A

AA 

A 

A A

 
Figure 1a. Illustration of tracer and collective correlation effects (see text). 
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Figure 1b.  Illustration of tracer and collective correlation effects (see text) 
 
       Let us briefly consider Figure 1b in order to examine off-diagonal collective 
correlation effects. Again we assume for convenience that one of the A atoms (the 
hatched one) is a tracer of A and has just exchanged places with the vacancy. In other 
words the first jump is an A atom jump. We are now interested in the next jump of the B 
species. Clearly, the tracer atom must still be there: its presence changes the possible 
types of jumps so that the first cosine <cos θAB

(1)> will increase as the number of B atoms 
increases.  
 
 
3. Relations between the phenomenological coefficients and tracer diffusion 
coefficients 
 
       The direct measurement of the phenomenological coefficients in the solid state is 
very difficult. Accordingly, there has been sustained interest in developing relations 
between the phenomenological coefficients and the (measurable) tracer diffusion 
coefficients. The first of these are the Darken Relations [11]. In essence, the Darken 
assumption is the neglect of the off-diagonal phenomenological coefficients entirely. 
The diagonal phenomenological coefficients can then be related to the corresponding 
tracer diffusion coefficients; for example, in a binary AB alloy, LAA is then simply related 
to the tracer diffusion coefficient of A, : *

AD
 

kTDCL AAAA /*= ,      LAB = 0                    (16) 
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We have already seen that the neglect of the off-diagonal phenomenological coefficient 
can be dangerous in principle. However, in most cases, it is reasonable as a first rough 
approximation.  
       The second set of relations between the phenomenological coefficients and tracer 
diffusion coefficient are the Manning Relations [12,13] which were developed originally 
for the random alloy in which the various atomic species and the isolated vacancy are 
randomly mixed. In the Manning Relations, the phenomenological coefficients are 
directly related to the tracer diffusion coefficients by:  
 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
+=

∑
k

kk

iiii
ii DCM

DC
kT
DCL *

0

** 21 ,       
∑

=

k
kk

jjii
ij DCMkT

DCDC
L

)(
2

*
0

**

,   for i ≠ j. (17)

   
where M0 = 2f0/(1-f0) and f0 is the geometric tracer correlation factor for the lattice, e.g. 
f0=0.78146… for the f.c.c. lattice [6]. It is worth noting that the Manning Relations can 
also be obtained on the basis of two somewhat intuitive assumptions without recourse to 
the random alloy model [14], thereby suggesting that they have more general validity. 
Indeed, various computer simulations have shown that the Manning Relations are quite 
good approximations, even for ordered alloys, at least at low levels of order before 
concatenated mechanisms such as the six-jump cycle start to become important [15-17]. 
The Manning Relations have also been re-derived specifically for the ordered alloy [18].  
       The self-consistent theory of Moleko, Allnatt and Allnatt [19] also provides 
relations between the phenomenological coefficients and the tracer diffusion coefficients 
for the random alloy, but these relations are not expressible in a convenient closed form. 
Nonetheless, it is still possible to use straightforward numerical methods to find all of 
the Lij from a given set of tracer diffusion coefficients for all of the atomic species [20]. 
Computer simulations [9] have shown these relations to be more accurate than those 
provided by Manning and described above. 
       The third relation is the Heumann relation [21] that was determined after 
consideration of the five-frequency model, see also [3,22]. This model, which was first 
proposed by Lidiard [23], is very useful for describing solute and host diffusion kinetics 
in f.c.c. metals and f.c.c. sublattices in ionic crystals when the vacancy-solute interaction 
is localized. The five frequencies in the model refer to the following: a vacancy-host 
atom (A) exchange frequency w0, a vacancy-host (A) exchange frequency w1 referring to 
a ‘rotational jump’ around a solute atom i.e. from one nearest neighbour site to another 
of the solute, a vacancy-solute (B) exchange frequency w2, a vacancy-host (A) atom 
exchange frequency w3 that brings the vacancy to a site neighbouring to the solute atom 
(this is usually called the ‘associative jump’), and finally a vacancy-host atom (A) 
exchange frequency w4 that is the reverse of the w3 jump (this is usually called the 
‘dissociative jump’). It can be shown that for a dilute alloy in the limit where the solute 
concentration CB → 0, the ratio of LAB(0) / LBB(0) is given by [21]: 
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where ,  are the tracer diffusion coefficients of A and B and  is the 
intrinsic diffusion coefficient of A in the dilute alloy at the limit C

)0(*
AD )0(*

BD )0(I
AD

B → 0. 
 
 
 
 
 
4. Relations among the phenomenological coefficients 
 
       Recently, various relations, usually called ‘sum-rules’, have been identified between 
the phenomenological coefficients in randomly mixed systems, in effect reducing the 
number of independent phenomenological coefficients. These relations are of quite some 
interest. First of all, the assumption of random mixing in diffusion problems is a very 
common one indeed. Experience gained from many Monte Carlo computer simulations 
has shown that a non-random distribution of components does not change the basic 
diffusion kinetics behaviour very much unless long range order or clustering is present. 
In other words, the effect on the jump frequency and the correlation factors, tracer or 
collective, of a non-random distribution is relatively small. Indeed, the main effect of a 
change in the distribution of the components is in fact in the thermodynamic factor 
appearing in expressions for the chemical diffusion coefficient. In general, the 
thermodynamic factor can be treated quite separately from the jump frequency and 
correlation parts. In collective diffusion problems it has been found that a considerable 
degree of simplification is frequently possible through the use of sum-rule relations: 
solution of problems such as demixing in oxides [24], chemical diffusion in mixed cation 
ionic crystals [25] and chemical diffusion in multicomponent alloys [26] have all 
benefited considerably through the application of these sum-rules. 
       Here, as an example, we will deal with the relation or sum-rule between the 
phenomenological coefficients in the random alloy model with the vacancy mechanism 
operating. The random alloy model is an important model because it is a convenient 
vehicle for describing the diffusion kinetics in concentrated multicomponent alloys. In 
the random alloy model, the atom-vacancy exchange frequencies, wi, can be considered 
in two rather different ways. In the first way, the frequencies can be classified simply as 
explicit frequencies that depend only on the species of the atom and not the 
surroundings. For example, in the binary random alloy, wA then simply represents the A 
atom vacancy exchange frequency of a given A atom at all compositions and 
environments. In the second and more general way, one considers that the wi represent 
an average frequency of species i at a given composition. For example, in the binary 
random alloy, wA would then represent the average frequency of a given A atom as it 
migrates through the lattice sampling the various environments.  Since the average 
environment of an atom will obviously change with composition, then the wi can also be 
expected to change with composition, see for example [27].  
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       In 1989, Moleko and Allnatt identified the following sum-rule for the M-component 
random alloy with the vacancy mechanism operating and at arbitrary vacancy 
concentration [28]: 

jjV

M

i
ijij CwAcwwL =∑

=1
/ ,      j = 1,…, M                                   (19) 

 
where A is given by A = z a2/6kT (z is the coordination number and a is the jump 
distance for a vacancy jump). In effect, the sum-rule relates the phenomenological 
coefficients to the vacancy-atom exchange frequencies and, in so doing, reduces the 
number of independent phenomenological coefficients. For example, in the binary 
random alloy, there is only one independent phenomenological coefficient and not three. 
In the ternary random alloy, the number of phenomenological coefficients is reduced 
from six to three. This sum-rule was implied in earlier diffusion kinetics work on the 
random alloy model at a very low vacancy concentration, see, for example, the Manning 
formalism [13], but was simply not identified as such at the time. The sum-rule can also 
be restated in terms of the collective correlation factors as:        

             ,            j = 1,…,M                                             (20) 1/
1

)( =∑
=

M

i
ij

j
ij wwf

 
       The derivation of the sum-rule is beyond the depth of the present introductory 
review but the general principle can be described readily in words. We consider a 
random alloy with the vacancy mechanism operating. We assume that an atom of species 
i has just made a jump. We accept this jump as the initial point in time and take a 
‘snapshot’ of the system. Then, for each quantity like Lij, we need to consider how the 
system changes from the initial configuration (after the jump of the i atom) during the 
jumping of the vacancies: i.e. after the first jump, the second jump and so on. At each 
moment in time we choose a vacancy randomly from the current configuration (there is a 
specific probability for the system to get to this configuration starting with the initial 
one), then we choose a random direction and find an atom of some type (or another 
vacancy). Accordingly, for each direction there is a defined probability that the vacancy 
makes an exchange with the atom there. If this is an atom of species j then a contribution 
to the cosine between the first jump of the i atom and the final jump of the j atom (the 
basic quantity in Lij see Equations 14, 15) is equal to the probability for a system to get 
to the current configuration multiplied by the vacancy concentration and multiplied by 
the vacancy-atom j exchange frequency (and divided by the co-ordination number). 
Therefore each contribution of this type for a different atomic species j differs from one 
another only by the corresponding exchange frequency. After all the summations are 
done we end up with the sum-rule relation as shown in Equation 19. 
       For the binary alloy AB the sum-rule relation is: 
 

                 AwCcLL
w
wL AAVAAAB

B

A
AA ==+ )0( ,                                          (21a) 
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w
wL BBVBBAB

A

B
BB ==+ )0( ,                            (21b)   

                                                                                                                                                                          
where cV is the vacancy fraction. 
 
       Since the identification of the first sum-rule by Moleko and Allnatt for the vacancy 
mechanism in the random alloy [28], various sum-rule relations have been identified for 
a number of other mechanisms and situations including the dumb-bell interstitial 
mechanism in the binary random alloy [29], the divacancy mechanism in the f.c.c. 
random alloy [30], the vacancy-pair mechanism in strongly ionic materials with 
randomly mixed cations [31], the vacancy mechanism for a model of an intermetallic 
compound (with randomly mixed sublattices) [32] and certain parts of a reduced five-
frequency model for solute and solvent diffusion in the f.c.c. lattice with the vacancy 
mechanism operating [33]. No doubt further sum-rules relating the phenomenological 
coefficients will emerge in the future. 
 
5. Conclusions 
 
       In this review, which was intended to provide an introduction to the subject, we 
introduced the phenomenological transport coefficients in solid state diffusion and 
discussed their structure and physical meaning. Next, we discussed the Darken, the 
Manning, the Moleko, Allnatt and Allnatt and the Heumann expressions relating the 
phenomenological coefficients to the (measurable) tracer diffusion coefficients.  Finally, 
we discussed the relationships (sum-rules) among the phenomenological coefficients 
themselves in randomly mixed systems and noted their applicability for simplifying 
collective diffusion problems. 
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