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Abstract

The stationary states of driven diffusive single-file systems, connected to boundary
reservoirs with fixed particle density are shown to be selected by an extremal principle
for the macroscopic current. Given the current one obtains the exact first- and second-
order non-equilibrium phase transition lines for the bulk density as a function of the
boundary densities. The basic dynamical mechanism behind the extremal principle
is an intriguing generic interplay between the motion of shocks and localized pertur-
bations. Two-component driven systems exhibit unexpected and fascinating critical
phenomena.

1 Introduction

Many materials exhibit a phenomenon generally termed single-file diffusion. This refers
to a diffusive random motion of particles which is confined to essentially only one spatial
degree of freedom. Such a situation arises typically if particles move under the influence of
a random force in a tube-like geometry where the tube diameter is of the order of the particle
size, but the length of the tube is much larger. Well-known examples of such single-file
systems are molecules diffusing in the channels of certain types of zeolites [1], or colloidal
particles in narrow tubes [2]. Sometimes effectively one-dimensional dynamics appears in
disguise, e.g. in the reptation of entangled polymers [3] where the transverse dynamical
degrees of a freedom of a polymer chain is suppressed by the surrounding chains, or in
the motion of the one-dimensional boundary of a thin surface layer [4]. Last, but not
least, quasi-one-dimensional random motion plays a crucial role in some non-physical systems,
notably automobile traffic flow and the motion of motor proteins along microtubuli or actin
filaments in a biological cell.

Most of these systems are kept permanently far from equilibrium by boundary density
gradients or external driving fields, or, in the case of the non-physical examples, by being
self-driven. In either case there is no equilibrium steady state given by the Boltzmann dis-
tribution. Instead, a current flows in the system which is described by a nonequilibrium sta-
tionary distribution for which no general macroscopic theory analogous to equilibrium ther-
modynamics exists [5, 6, 7]. Therefore stationary behaviour cannot be deduced from any
known general principle, but has to be derived from the system dynamics of each system
separately. This unfortunate situation calls for the study, both theoretical and experimental,
of simple model systems. The objective is the identification of generic mechanisms which
shed light on general features of the emergence of macroscopic nonequilibrium behaviour
from the microscopic laws of interaction. In this paper we review some of the theoreti-
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cal progress that has been achieved in the past decade for a wide class of driven diffusive
systems and which is amenable to verification with present-day experimental equipment.

The study of single-file diffusion is motivated not only by its ubiquitity indicated above.
The investigation of interacting particle systems far from equilibrium has shown that one-
dimensional driven diffusive systems with short-range interactions exhibit a remarkably
rich variety of critical phenomena. Unlike in thermal equilibrium one observes sponta-
neous symmetry breaking, long-range order and phase coexistence in the steady state if
the system evolves under certain microscopic kinetic constraints or has more than one con-
servation law, i.e., in two-component many-body systems [8]. Most of these phenomena
are not well-understood yet and a matter of current research. For systems with only one
conserved particle species, however, it has turned out that parts of the program of deriv-
ing macroscopic non-equilibrium behaviour from microscopic stochastic dynamics can be
carried out to a very satisfactory degree. Despite their simplicity, these systems exhibit
a rich and rather non-trivial dynamical and stationary behaviour. For an exactly solvable
paradigmatic model, the asymmetric simple exclusion process (ASEP, see below) not only
the macroscopic nonlinear hydrodynamics have been derived rigorously [9, 12] but also de-
tailed microscopic information aboutuniversalphenomena, including formation and dif-
fusion of shocks [10, 11], the microscopic origin of the stability of shocks [5] and the
dynamical structure function [13, 14] could be obtained in the past decade.

For one-species systems with open boundaries where particles can exit and enter this
has led to a theory of boundary-induced phase transitions which provides a general frame-
work for a quantitative description of the steady-state selection in driven diffusive sys-
tems which are in contact with particle reservoirs at their boundary. Unlike in equilibrium,
boundary conditions determine the bulk behaviour of driven diffusive systems in a decisive
fashion which can be captured in terms of an extremal principle for the current [15, 16]. The
resulting phase diagram for the nonequilibrium steady state is determined by the interplay
of localized excitations and shocks. This theory is reviewed in the following three sections
and some suggestions are made how the theory could be confirmed experimentally (Sec.
5). In the final two sections we review some recent intriguing work on two-component
systems. In particular, we derive a quantitativecriterion for phase separation and thus
show how the occurrence of phase separation can be understood dynamically in terms of
a classical nonequilibrium analogue of Bose-Einstein condensation.

2 Steady state selection in open driven systems

Imagine an interacting driven particle system – it may beany system such as ribosomes
moving along a m-RNA, ions diffusing in a narrow channel, or even cars proceeding on
a long road – where classical objects move with preference in one direction and which
is coupled at its two ends to external reservoirs. The simplest model which captures the
three basic features of biased random motion with short-ranged interactions is the totally
asymmetric simple exclusion process (TASEP) where particles hop on a 1-d lattice with
constant rate to the right, provided the neighbouring lattice site is vacant. Otherwise an
attempted move is rejected. In a finite, open system particles are injected with rateα at
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the left boundary site 1. At the right boundary siteL particles leave the system with rate
β. This corresponds to a coupling to reservoirs of constant densitiesρL = α = ρtrue

L and
ρR = 1 − β = ρtrue

R . This model was first introduced in 1968 to describe the kinetics of
protein synthesis [17, 18] and has since then obtained paradigmatic status as an interesting
and exactly solvable model for a many-body system out of equilibrium [7, 5]. It even serves
as a very simple toy model for traffic flow [19, 20], exhibiting stable shocks analogous to
traffic jams.

In general, any system with open boundaries where particles can enter and leave will
settle into a non-equilibrium steady state characterized by some bulk density and the cor-
responding particle current. We pose the following fundamental question: Which stationary
bulk density will the system assume as a functionof the boundary densities?

At first glance this appears to be an ill-posed question as undoubtedly the answer to this
problem of steady state selection (first considered in general terms by Krug [15]) depends
on the system under investigation. However, guided by the insights gained from the exact
solution [21, 22] (see below) of the totally asymmetric simple exclusion process (TASEP),
we have developed a dynamical theory of boundary-induced phase transitions for homo-
geneous one-species driven particle systems with a single conserved density [16, 23]. The
phase diagram for the bulk density is governed by an extremal principle for the current –
irrespective of the local dynamics. As a function of non-universal effective right and left
boundary densitiesρR,L the steady-state currentj is given by the macroscopic current-
density relation

j =


max

ρ∈[ρR,ρL]
j(ρ) for ρL > ρR

min
ρ∈[ρL,ρR]

j(ρ) for ρL < ρR.
(1)

The structure of the phase diagram which exhibits a variety of first- and second-order non-
equilibrium transitions is determined by the number of extrema of the current. The micro-
scopic details of the system enter only in so far as they determine the functional form of
the currentj(ρ) and the effective boundary densities which depend on the true boundary
densities through the details of the coupling mechanism. At the second-order phase tran-
sition lines the intrinsically non-universal properties of the boundary layer are dominated
by a universal power law decay of the density profile to its bulk value [15, 24]. The ex-
tremal principle (1) and hence the various phases and the nature of the transitions can be
understood dynamically by the interplay of local fluctuations (which lead to an overfeeding
effect [21, 23]) with the branching and coalescence of shocks [16] (see below).

3 Exact solution of the TASEP with open boundaries

In the simplest non-trivial case the current is a convex function with a local extremum. This
is realized in the TASEP with the current-density relation

j = ρ(1− ρ) (2)

which has a single maximum of the current at the densityρ∗ = 1/2.
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Employing probabilistic tools, Liggett [25] obtained a recursion relation for the station-
ary distribution of the TASEP in system sizeL from which he could extract the bulk density
as a function ofα andβ and hence the phase diagram. However, in order to understand the
physical origin of the phase transitions, one has to study the local density profile. From the
steady-state recursion for the2L configurational probabilities one obtains closed recursions
for the unnormalized string weights

YL,k ∝ 〈 . . . 00000 〉 (3)

k . . . L.

These quantities are the probability of finding the lastL− k + 1 sites empty. Furthermore,
one finds

Xp
L,k ∝ 〈 . . . 1 . . . 00000 〉 (4)

p . . . k . . . L

resp. [26] for the probability to find the lastL− k + 1 sites empty, but a particle at sitep.
These quantities satisfy

YL,k = YL,k−1 + αβYL−1,k for 1 < k < L + 1 (5)

YL,1 = βYL−1,1 with Y0,1 = 1 (6)

Xp
L,k = Xp

L,k−1 + αβXp
L−1,k for p + 1 < k < L + 1 (7)

Xp
L,L+1 = Xp

L,L + αXp
L−1,L with Xp

L,p+1 = αβYL−1,p+1. (8)

For generalα, β these recursion relations are not straighforward to solve with standard
approaches. However, solving explicitly for small system size, guessing the pattern be-
hind the expressions and verifying the guess by cross-checking with the recursion relations
yields the bulk densityρ as well as the density profiletp = ρp − ρp−1 for 1 ≤ p ≤ L [21].
One finds in agreement with the extremal principle (1)

ρ =

 α = ρL for β < α < 1/2
β = 1− ρR for α < β < 1/2
1/2 = ρ∗ for α, β > 1/2.

(9)

and
tp = A(α, β)Φp(α)ΦL−p(β) (10)

with

Φn(x) =
1− 2x

2[x(1− x)]n
+ 2

(
2n
n

)
2F1(1, n + 1/2, 1/2; (1− 2x)2) (11)

involving the standard hypergeometric function2F1(1, n + 1/2, 1/2; (1 − 2x)2). In an
alternative matrix product approach [22] the same exact results were obtained.

The phase diagram (Fig. 1) has three phases, a maximal-current phaseC in the domain
ρL > ρ∗, ρR < ρ∗ (bulk densityρ = ρ∗), with second-order transitions to the low-density
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Figure 1: Exact phase diagram of the TASEP (a) and of a lattice gas model with two
maxima atρ∗1,2 and a minimum atρmin = 0.5 in the current density relation (b). Full
(bold) lines indicate phase transitions of second (first) order. Circles show the results of
Monte-Carlo simulations of a system with 150 sites [16].

(ρ = ρL < ρ∗) and the high-density phase (ρ = 1 − ρR > ρ∗) resp. These phases are
separated by a first-order transition along the linejL = jR in the domainρL < ρ∗, ρR >
ρ∗. The phase diagram of the TASEP is generic for all systems with a single maximum in
the current-density relation in that the phase transition lines are given by the same relations
in terms of the current. For a system with two maxima of the current the phase diagram
consists of seven distinct phases, including two maximal current phases with bulk densities
corresponding to the respective maxima of the current and a minimal current phase in a
regime defined by

j(ρR), j(ρL) > j(ρmin); ρL < ρmin < ρR. (12)

Somewhat contrary to intuition the system organizes itself into a state with bulk density
ρbulk corresponding to the local minimum of the current even though both boundaries sup-
port a higher current [16].

4 Shocks and overfeeding

To understand the origin of the extremal principle for the current we first note that in the
absence of detailed balance stationary behavior cannot be understood in terms of a free
energy, but has to be derived from the system dynamics. Following Kolomeisky et al. [23]
there are two basic dynamical phenomena to consider. A density wave, i.e. a localized
perturbation in a stationary region of background densityρ (Fig. 2), spreads out in the
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Figure 2:(a) Diffusive spreading of a density perturbation in the steady state at two timest2 > t1.
The collective velocity describes the motion of the center of mass of the perturbation. (b) Motion of a
shock. To the left (right) of the domain wall particles are distributed homogeneously with an average
densityρL (ρR).

course of time, but keeps a constant center-of-mass velocityvc. Under mild assumptions
on the nature of the steady state this collective velocity is given by the derivative

vc =
d

dρ
j (13)

of the current [5].
In a driven system with non-linear current-density relation one observes shocks, i.e.

abrupt changes in the local density (Fig. 2). Shocks are stable collective excitations which
travel with a mean velocityvs determined by the boundary densities of the shock. Irrespec-
tive of the specific system mass conservation yields

vs =
jL − jR

ρL − ρR
. (14)

In equilibrium phenomena a domain wall is a localized region where the order parameter
interpolates between degenerate ground states. In driven non-equilibrium systems a shock
is like a domain wall, separating two possiblestationarystates of the system. A first-order
transition between these states takes place when the shock velocity changes sign. Since the
shock velocity is determined by boundary conditions a first-order (discontinuous) transition
in the bulk density may be induced by boundary effects. This picture is well-supported
by the linear increase of the local density (10) exactly at the first-order transition which
corresponds to an average over all shock positions resulting from an unbiased random walk.

The factorized form of the density profile (10) suggests to study the two boundaries
separately from each other. An overfeeding occurs when the collective velocity with which
variations of the boundary density penetrate into the bulk changes sign. Injected parti-
cles create a localized increase of the density which cause back-moving density waves for
boundary densities where the current has negative slope. These waves block further in-
jection attempts and thus prevent a change in the stationary bulk current. The result is a
second-order (continuous) phase transition in the bulk density.

These velocities and the underlying single-shock picture are sufficient to understand
the phase diagram of systems with a single maximum in the current. If the current has
a local minimum a single shock may branch into two distinct shocks, moving away from
each other. This phenomenon follows from the stability criterion [5]

vc(ρL) > vs(ρL, ρR) > vc(ρR) (15)
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Figure 3: Monte-Carlo simulation of the particle density distribution in a lattice gas in the
initial state (one shock) and after 300 Monte-Carlo sweeps, showing branching into two
shocks. 3000 histories are averaged over [16].

for a single shock which one obtains by considering the flow of fluctuations in the neigh-
bourhood of the shock. This behaviour which explains the emergence of the minimal cur-
rent phase can be checked numerically (Fig. 3).

With these observations the dynamical origin of all phase transition lines can be under-
stood by considering the time evolution of judiciously chosen shock initial states. Because
of ergodicity, the steady state does not depend on the initial conditions and a specific choice
involves no loss of generality. Thus one constructs the complete phase diagram and obtains
the extremal principle (1).

5 Measuring boundary-induced phase transitions

We have shown above that the interplay of density fluctuations and shock diffusion, coales-
cence and branching resp. determines the steady state selection of driven diffusive systems
with a single conserved density and leads to the extremal principle (1). In the absence of
bulk phase transitions we expect this scenario to remain valid also in higher dimensions. A
surprising phenomenon is the occurrence of a self-organized minimal current phase. Since
little reference is made to the precise nature of the dynamics we argue that the phase dia-
gram is generic and hence knowledge of the macroscopic current-density relation of a given
physical system is sufficient to calculate the exact nonequilibrium phase transition lines.

It would be interesting to investigate these theoretical predictions for colloidal particles
dragged down in a liquid in a narrow tube under the influence of gravitation. A difference to
the models described above is the presence of hydrodynamic interaction between particles.
However, according to the theory, the crucial property is a nonlinear flow-density relation,
but not the microscopic origin of that relation. Experimental evidence for such a nonlinear
relation has been provided by a three-dimensional setting. Hence one expects boundary-
induced phase transitions of the nature discussed here when tuning entrance and exit rates
for the colloidal particles in the tube. It is essential to avoid essentially ballistic motion
where the flow is simply proportional to the density.

So far, empirical evidence for the first-order transitions has been found in automobile
traffic flow data close to an on-ramp [27, 28]. However, the theory developed above does
not explicitly incorporate non-conserved internal degrees of freedom of the particles which
would correspond to velocity changes of cars. As a result, the behaviour of real traffic may
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be more complex.
It is worthwhile to consider in some more detail the kinetics of biopolymerization on

nucleic acid templates, as studied by MacDonald et al.[17, 18] using the TASEP. The mech-
anism they try to describe is (in a very simplified manner) the following: Ribosomes attach
to the beginning of a messenger-RNA chain and “read” the genetic information which is
encoded in triplets of base pairs by moving along the m-RNA.1 At the same time the ri-
bosome adds monomers to a biopolymer attached to it: Each time a unit of information is
being read a monomer is added to a biopolymer attached to the ribosom and which is in this
way synthesized by the ribosom. After having added the monomer the ribosom moves one
triplet further and reads again. So in each reading step the biopolymer grows in length by
one monomer. Which monomer is added depends on the genetic information read by the
ribosom. The ribosoms are much bigger than the triplets on the m-RNA, they cover 20-30
of such triplets. Therefore neighbouring ribosomes sitting at the same time on the m-RNA
cannot simultaneously read the same information. Furthermore they cannot overtake each
other: If a ribosom sits at a particular place on the m-RNA and does not (temporarily)
proceed further (e.g. because no appropriate monomer has been found in the surrounding
medium for the polymerization process), then an oncoming ribosom from behind will stop
until the first has eventually moved on. In order to describe the kinetics of this process
MacDonald et al. introduced the following simple model. The m-RNA is represented by
one-dimensional lattice ofL sites where each lattice site represents one triplet of base pairs.
The ribosom is a particle coveringr neighbouring sites (for real systemsr = 20 . . . 30) but
moving by only one lattice site in each (infinitesimal) time step with a constant ratep.
These particles interact via hard-core repulsion, i.e. there is no long range interaction, but
there is also no overlap of ribosomes. At the beginning of the chain particles are added
with rateαp and at the end of the chain they are removed with rateβp.

The idealized caser = 1 corresponds to the ASEP with open boundary conditions. Its
steady state was first studied using a mean-field approach [17]. Then in a following paper
[18] the generalized caser > 1 was studied numerically and compared to experimental
data on the stationary density distribution of ribosomes along the chain. These were found
to be consistent with the results obtained from the model withq = 0 and α = β <
p/2. Furthermore it turned out that the mean field phase diagram for generalr is similar
to the much simpler caser = 1 in the sense that there are three distinct phases, a low
density phase, a high density phase and a maximal current phase as discussed above. These
observations encourage to use the asymmetric exclusion process as a simple but in certain
aspects realistic model for this biological system.

The experimentally relevant case is the phase transition line from the low-density phase
to the high density phase. On this phase transition line the mean-field calculation predicts a
region of low density of ribosomes from the beginning of the chain up to some point where
the density suddenly jumps (over a few lattice sites) to a high density value. The exact
solution confirms the three phases predicted by mean field, but gives a linearly increasing
density profile rather than the sharp shock predicted by mean field [21]. Within the theory
developed above this can be explained by assuming that a sharp shock exists, but, due to

1The m-RNA is a long molecule made up of such consecutive triplets.

Diffusion Fundamentals 2 (2005) 5.1 - 5.19 8



current fluctuations, performs a random walk along the lattice. What one therefore expects
for an experimental sample is indeed a region of low density of ribosoms followed by a
sharp transition to a region of high density of ribosoms as found experimentally. This rapid
increase can be anywhere on the m-RNA, but with an exponential probability distribution
with localization lengthξ = 1/(ln [α(1− α)/β(1− β)]) for α 6= β and constant distribu-
tion for α = β [21]. Thus the shock known from the exclusion process corresponds to a
traffic jam of ribosomes which explains an experimentally observed slowing down of the
ribosomes as they approach the terminal point of the m-RNA where they are released after
completion of the protein synthesis [29, 30, 31, 32]. It would be interesting to reexamine
the kinetics of biopolymerization in the light of these predictions.

In another biological setting it has been suggested that exclusion particles may describe
molecular motors such as kinesins moving along microtubuli or actin filaments in a cell [45,
46]. Due attachment and detachment during the motion a description with non-conservative
dynamics is required where particles are annihilated and created with a small rate also in
the bulk. This leads to the model of Ref. [47] with open boundaries which yields interesting
new phenomena, in particular localization of shocks [48, 49] and ergodicity breaking [50]
even though the non-conservative bulk reactions increase the randomness of the dynamics.

6 Two-component systems

Somewhat surprisingly, numerical evidence shows that driven diffusive systems with two
distinct particle species cannot be understood by straightforward generalization of the ideas
developed above for one-component systems. Rather it was found that there is exciting new
physics, including spontaneous symmetry breaking and phase separation phenomena, even
in translation invariant systems [8, 33, 34]. Neither the hydrodynamic behaviour of systems
with more than one conservation law nor the microscopic conditions for the occurrence of
critical phenomena are well-understood. In order to describe a system with two different
conserved speciesA,B of identical particles (or alternatively: tagged particles or particles
with two internal states which do not affect its dynamics) one needs a model where each
lattice site can be found in at least three different states: empty, or occupied by either anA-
particle or aB-particle. The most simple extension of the exclusion process that accounts
for the possibility of two particle species may hence be described by the six hopping rates

A0 → 0A with rate DA0

0A → A0 with rate D0A

B0 → 0B with rate DB0

0B → B0 with rate D0B (16)

AB → BA with rate DAB

BA → AB with rate DBA.
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There is no established name for this generic process and we shall refer to it as two-species
ASEP. Associated with the two conservation laws there are two currents defined by

d

dt
ρA

k = jA
k−1 − jA

k (17)

d

dt
ρB

k = jB
k−1 − jB

k . (18)

Notice that in generaljA andjB depend on both occupation numbersnA
k , nB

k respectively.
Hence one has two coupled lattice continuity equations. The stationary distribution of this
process and hence the current-density relation is known only on certain parameter mani-
folds. The natural order parameter that describes the macroscopic state of the system is the
particle density of each species. In order to illustrate the significance of these models we
give some examples of quasi one-dimensional two-component systems.

Tracer diffusion: The simplest way of obtaining a system with two conservation laws
consists in considering tagged particles in the usual ASEP. Tagged particles (= particles of
type B) have the same physical properties as usual particles, except that they carry a marker
which allows for their identification, but does not affect the dynamics. Thus one gets the
two-species ASEP (16) with

DB0 = DA0

D0B = D0A (19)

DAB = DBA = 0.

In the unbiased caseDA0 = D0A a single tracer particle in a stationary system of
densityρ is predicted to perform anomalous diffusion with a mean square displacement
〈X2(t) 〉 ∝ (1 − ρ)/ρ

√
t [35, 36, 37]. Recently this was confirmed experimentally in the

investigation of tracer diffusion in zeolites [1] using pulsed field gradient NMR [38] and in
the study of single-file diffusion of colloidal particles [2].

In the driven case (19) the situation is more complex. When averaging over random
initial states of the system according to the weights given by the stationary distribution, the
mean square displacement was proved to grow linearly in time with a diffusion coefficient
D = (Dr − D`)(1 − ρ) [39]. On the other hand, for fixed initial states (averaging only
over realizations of the process) the variance is expected to grow subdiffusively with power
t2/3 [40, 41]. In a finite system with periodic boundaries the variance in the number of
hops made in the totally asymmetric process (D0A = 0) has been calculated exactly in the
infinite-time limit [22, 42] and been found to decrease asymptotically∝ 1/

√
L in system

size. This is to be expected from dynamical scaling with the well-known dynamical expo-
nentz = 3/2 of the asymmetric exclusion process [43, 44].

Biophysics:A two-species exclusion process has been introduced to describe the motion of
ants along ant trails [51]. While crawling along a trail, the ants – modelled byA-particles
hopping along a lattice – produce pheromones (B-particles) which serve as a marker of
the traversed path for other ants which again produce pheromones for subsequent ants.
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This is necessary to stabilize the trail as the pheromones evaporate after some time. The
pheromones are modelled as an immobile particle species which is deposited when a hop-
ping event has taken place and which disappears with some evaporation rate. The analogy
of the flow of ants to traffic flow has been pointed out in Ref. [52] who measured the
flow rate versus the density of ants, i.e., the current density relation. The numerical re-
sults obtained from the two-species ant trail model yield qualitatively similar results [51].
Essentially the same model (with different parameter values and update rules) has been
introduced as a “bus route” model where one observes bunching of particles (=“buses”) as
they travel along lattice (“bus stops”) and pick up passengers [53]. Bunching of real buses
appears to occur on services which do not run according to fixed schedules, but which stop
according to demand. This suggests that phase separation between a region of high den-
sity and a region of low density may occur in two-component systems. This question is
addressed in detail below.

Polymer dynamics: In polymer networks such as rubber gum or gels, in polymer melts
or in dense solutions of macromolecules such as DNA different polymer strands form a
complicated topological structure of entanglements somewhat reminiscent of a large por-
tion of spaghetti. The entanglements severely restrict the dynamical degrees of freedom
of the polymer chains. In the framework of the celebrated reptation theory developed by
Doi, Edwards, and de Gennes [57, 58] the motion of an individual polymer is viewed as
being confined by a hypothetical tube which models the collective effect of all entangle-
ments of the neighbouring polymer chains. In an uncrosslinked melt or solution the tube
is open at both ends, since at the end points the motion of polymer segments transverse to
its own contour is not restricted by topological constraints. This picture results in a snake-
like one-dimensional effective dynamics of polymer segments along the tube, with extra
orientational degrees of freedom only at its ends.

In a lattice model of Rubinstein [59] the reptation dynamics is modeled by the symmet-
ric exclusion process with open boundaries which describe the extra end point degrees of
freedom. With this model exact results for the relaxation of the contour and contour length
fluctuations have been obtained. Recent experiments on the dynamics of single entangled
DNA-molecules in dense solution confirm the findings [3, 60].

Duke [61] extended the model to allow for tracking the spatial orientation of the tube
rather than only its length. This was done in order to introduce a reference axis for describ-
ing gel electrophoresis, i.e., the separation of polymer fragments according to their length
L. By applying an electric field of strengthE (the direction of which is the reference axis)
a charged polymer is expected to move through a gel matrix (which provides an entangle-
ment network) according to the rules of reptation. However, standard reptation theory does
not allow for a prediction of the drift velocityv beyond the linear response regime of small
fields or very long polymers where

v ∝ DEL. (20)

HereD is the diffusion coefficient of an entangled polymer, predicted by reptation theory
to scale

D ∝ 1/L2 (21)
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with length. The extended Rubinstein-Duke model is an asymmetric three-states exclusion
process (16) withDAB = DBA = 0 and open boundaries. Exact and rigorous results
[62, 63] confirm the predictions (20), (21). Moreover, simulations at high fields yield the
drift velocity in the non-linear regime [64] which are in good agreement with experimental
data [65]. At sufficiently high fields the model exhibits spontaneous symmetry breaking in
the orientation of the polymer chain [66].

A long-standing mystery in reptation theory has been the asymptotic behaviour of the
viscosityη of a polymer melt which is expected to scale asymptotically [57, 58]

η ∝ L3. (22)

However, experiments consistently give higher value≈ 3.4 of the scaling exponent. Doi
had suggested this to be a finite-size effect due to tube-length fluctuations [57]. That tube-
length fluctuations lead to an increased effective exponent could be confirmed by a careful
numerical analysis of the Rubinstein-Duke model [67]. Also details of the end-segment
dynamics were shown to have significant non-universal impact on finite-size behaviour of
the viscosity and the diffusion coefficient [68].

Interface growth: It was already realized in the 1980ies that the ASEP describes the
dynamics of a fluctuating interface by considering the spin variables as local discrete slopes
of an interface on a two-dimensional substrate [69, 70]. Hopping of a particle to the right
between sitesk, k + 1 corresponds to the random deposition of a particle on sitek of the
dual growth lattice, hopping to the left to an evaporation. One thus obtains a growth model
in the universality class of the one-dimensional KPZ equation [4], reviewed in [75]. The
extension of this mapping to the generalized exclusion process (16) is obvious, one obtains
a system where local height differences may take values0,±1.

7 Critical Phenomena in one-dimensional two-component
systems

It is well-known that in thermal equilibrium one-dimensional systems with finite local state
space and short range interactions do not exhibit phase transitions at positive temperatures,
only atT = 0 long range order may exist. From a dynamical viewpoint there are no thermal
fluctuations atT = 0 in a classical system. In terms of a stochastic process that means that
all transition rates are zero. Conversely, if a transition rate is non-zero, some dynamics –
not necessarily satisfying detailed balance – is going on and it has been conjectured that
quite generally a system with strictly positive transition rates and local interactions can
have at most one stationary distribution, which is often rephrased by saying that there can
be no phase transition in a one-dimensional system with strictly positive rates.

To rationalize the conjecture one imagines, in the simplest case, two potentially sta-
tionary distributions characterized by a different value of the order parameter. An example
is the Ising model where the order parameter is the magnetization, which can take two
different values below the critical temperature in two or higher dimensions. The reason-
ing behind the positive rates conjecture is the difficulty to imagine a local mechanism that
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eliminates islands of the minority phase (created constantly by thermal fluctuations in a
region where the other phase dominates) since in one dimension energetic effects due to
line tension play no role. Since the “boundary” of a one-dimensional island (viz. just the
two boundary points) does not grow with the size of the island (as it does in higher di-
mensions) a local mechanism cannot “detect” the size of a minority island, therefore such
an island can grow indefinitely and destroy the majority phase. Since noise (implied by
strictly positive rates) can always create such islands there seems to be no possibility to
keep the majority phase stable against fluctuations. In a certain “natural” class of systems
with nearest-neighbour interaction this conjecture has been proved rigorously some time
ago [71].

Therefore it came as a surprise that P. Gacs constructed a model on the infinite lattice
which violates the positive rates conjecture [72, 73]. However, both the model and the
proof that there is a phase transition is rather complicated [74], requiring either a very large
local state space or a very large interaction range, and the quest for simple models with this
property continues to stimulate research.

As a guideline in pursuing this aim we note that the conjecture is clearly true for dy-
namics satisfying detailed balance with respect to a local interaction energy: In this case
the stationary distribution is just the usual equilibrium distribution and the argument under-
lying the positive rates conjecture applies. Hence from a theoretical perspective one should
look for models that either violate detailed balance or have a nonlocal interaction energy,
but local dynamics. This would shed insight in critical phenomena that may occur in real
complex systems.

By definition, conservative systems have a continuum of stationary states (characterized
by the value of the order parameter) and hence the critical phenomena we review concern
transitions between different stationary distributionsat the same value of the order param-
eter and coexistence of macroscopic stationary domains where the order parameter takes
different values. The domain walls separating these domains are the shocks discussed in
the previous section. Hence the stability of domain walls is intimately connected with the
existence of phase separation.

The exact and numerical analysis of steady states of one-species systems has revealed
that phase separation in periodic systems may occur if one or more of the following condi-
tions are satisfied [8]:

• (I) there are spatially localized defects reducing the mobility of particles

• (II) single particles of a different species act as mobile blockages

• (III) the dynamics have kinetic constraints arising from a nonequilibrium zero-
temperature condition.

The last condition leads tostrong phase separationin the sense that one domain is fully
occupied whereas the other domain is entirely empty. The current in the phase separated
state vanishes exponentially in the size of the particle domain, the separated state exists
at any total particle density. Conditions (I) and (II) may lead to strong phase separation,
but allow also for a soft phase separation between domains of different densities. This
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phenomenon sets in only for densities above some critical densityρc. The steady-state
current is nonvanishing and independent ofρ in the phase separated state: Increasing the
density leads to an increase of the size of the high-density domain, but not to a change of
the current. In analogy to Bose-Einstein condensation we call the high density domain a
condensate, the transition atρc is referred to as condensation transition.

Strong phase separation has been found also in homogeneous systems on a ring where
neither of the conditions (I) - (III) is satisfied, but where there is a second species of particles
with finite density [76, 54, 77]. Hence we add a further condition for the possibility of phase
separation

• (IV) the system has two or more conservation laws

We remark that all the conditions (I) - (IV) in some way or other impose local constraints
on the dynamics of the driven diffusive system. This appears to be a general requirement
for phase separation in generic driven diffusive systems. The size of the local state space
and the range of interaction appear to be irrelevant if one of the conditions (I) - (IV) is
satisfied.

Using a four-states model which is equivalent to a two-lane model with two conserved
densities Lahiri and Ramaswamy [76, 78] address the question of phase separation in terms
of the stability of crystals moving steadily through a dissipative medium, e.g., a sediment-
ing colloidal crystal. In a certain limit (large particle radius or small elastic modulus of
the suspension) experiments suggest instability of such a crystal. Numerical analysis of
the lattice model, however, reveals a transition to a stable regime, corresponding to strong
phase separation. In the 2-species ASEP with rates [77, 79]

DA0 = D0B = DBA = 1, D0A = DB0 = DAB = q (23)

the mechanism for strong phase separation forq < 1 is very transparent. Here strong phase
separation refers into separation of three pure macroscopic domains, each consisting of
essentially only one particle species or empty sites. For simplicity we assumeNA = NB ,
but this is not necessary for the phenomenon to occur. Prepare a phase-separated block
which we symbolically represent by. . . 000AAAAAABBBBBB000 . . .. One observes
the following: (i) The0|A interface is stable by the criterion (15) since due to the absence
of B-particles one has the dynamics of the usual ASEP (with a bias to the right) in the
vicinity of this domain wall. (ii) TheB|0 interface is stable for exactly the same reason
(B particles have a bias to the left) (iii) TheA|B interface is stable since in the absence
of vacanciesB-particles act like vacancies w.r.t. the local dynamics of theA-particles and
vice versa. (iv) Since each domain wall is stable (only small fluctuations extended over
a finite range of lattice sites evolve at the phase boundaries) the assumption used in the
argument remains valid for all times.

Exact results have revealed that numerical evidence for soft phase separation may be
rather subtle and indeed be misleading [83]. It would thus be of great importance to find
other criteria which could distinguish between models supporting phase separation from
those which do not. Phase separation is usually accompanied by a coarsening process
in which small domains of, say, the high density phase coalesce, eventually leading to
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macroscopic phase separation. This process takes place as domains exchange particles
through their currents. When smaller domains exchange particles with the environment
with faster rates than larger domains, a coarsening process is expected, which may lead to
phase separation.

An approach that quantifies this mechanism and yields a criterion for phase separation
in terms of the current leaving the domains is proposed by Kafri et al [80]. The current-
criterion is readily applicable even in cases which cannot be decided by direct numerical
simulations. In order to explicitly state the criterion one distinguishes systems with a van-
ishing current of a finite domain of sizen

Jn → 0 (case A) (24)

from systems finite-size corrections to a finite asymptotic domain currentJ∞ of the form

Jn = J∞(1 + b/nσ) (case B). (25)

to leading order in1/n. For simplicity we assume here domains with vanishing drift ve-
locity in which case the current inside the domains equals the outgoing current. More
generally one has to distinguish the two currents leaving the cluster at the right and left
boundary respectively.

For b > 0 the current of long domains is smaller than that of short ones, which leads
to a tendency of the longer domains to grow at the expense of smaller ones. The current
criterion asserts that phase separation exists only in the following cases [80]:

Jn → 0 for n →∞ (case A) (26)

Jn → J∞ > 0 (case B) (27)

for eitherσ < 1 andb > 0 or σ = 1 andb > 2. In case A one has strong phase separation
for any density, whereas in case B one has soft phase separation at any density forσ < 1
and above a critical density

ρc ∝
1

b− 2
(28)

for σ = 1. The fluid regime has particles with densityρc. Hence in a finite system the
macroscopic size of the condensate in the phase-separated regime is determined by the
system parameterb. For an asymptotic decay faster than2/n there is no condensed phase,
the system is disordered for all densities. The criterion presented above emerges from a
careful analysis of the zero-range process [84] which could be viewed as a generic model
for domain dynamics in one-dimension [80].

For J∞ 6= 0 (case B) we note that in a system with two conservation laws the current
inside a cluster organizes itself to a value determined by the dynamics of the reduced system
with only one conservation law resulting from the absence of vacancies. This reduced
system has open boundaries with in- and outflow of particles such that the system is in the
generic maximal current phase of the reduced system. It is assumed that the current flowing
through a block is given by its steady-state value and is independent of its neighboring
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blocks. This may be justified by the fact that the coarsening time of large domains is very
long, and the domains have a chance to equilibrate long before they coarsen.

In case B one expects genericallyσ = 1 for the following reason: (a) In aperiodic sys-
temthe leading finite-size corrections to the currentJ∞ in a canonical ensemble is given
by Jn − J∞ = −J ′′∞κ/(2n) [55, 81]. HereJ ′′∞ is the curvature of the current-density
relation andκ = (〈N2 〉 − 〈N 〉2)/L is the nonequilibrium analog of the thermodynamic
compressibility which is assumed to be finite, i.e., one assumes sufficiently rapidly decay-
ing correlations as was implied above in the derivation of the collective velocity which also
requires finite compressibility. (b) There is a universal ratioc∗ of the finite-size corrections
to the current in the maximal current phase of a driven diffusive system (which describe
the dynamics inside the growing domains) and the finite-size corrections of the canonical
ensemble of a periodic system [56]. This yields leading finite-size corrections of the form
(24) with a parameterb entirely determined by the universal constantc∗ and the macro-
scopic quantitiesJ ′′∞ andκ. The value ofc∗ = 3/2 has been obtained from the exact
solution of the ASEP with open boundaries [21, 22].

We stress that by definitionb is a quantity that itself does not depend on system size.
For systems with unknown stationary distribution the reduced dynamics inside a cluster
allows for a simple numerical measurement ofb by studying the finite-size corrections
of the stationary current in the reduced open system of lengthn. One neither needs huge
lattices nor is one faced with the problem of slow relaxation of the phase separation process
in the full system. Applying the criterion to the model introduced in Ref. [54] yields the
exact valueb = 3/2 and hence one expects no condensation, in agreement with the exact
result [83]. This is important in so far as mean-field analysis and numerical simulations
had originally misled the authors of [54] to the conclusion that phase separation should
occur in that model. For the two-lane model of Korniss et al [82] one obtains numerically
b ≈ 0.8 [80] and therefore one expects no condensation in contrast to the results of the
Monte-Carlo simulation of the full model with104 lattice sites. A three-states model with
next-nearest neighbour interaction inside the clusters has been shown to haveb > 2 [81]
which suggests the existence of soft phase separation in driven diffusive systems with two
conservation laws.

8 Conclusions

There is hardly a single major field of physics such as biophysics, polymer physics and
so on where single-file diffusion plays a dominant role. Yet in many diverse subfields the
study of one-dimensional driven diffusive motion provides the conceptual framework to
understanding key phenomena in the respective areas, such as polymer reptation, single-file
diffusion in zeolites, and so on. Exact analytical tools and numerical investigation of single-
component systems has made it possible to bridge the gap between microscopic models
and a coarse-grained macroscopic description. Thus we are furnished with a microscopic
understanding of macroscopic concepts such as shock motion and steady state selection.
A crucial role is played by the macroscopic current-density relation which allows for a
quantitative prediction of the phase diagram of boundary-induced bulk phase transitions.
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Particle systems with two or more components have proved to exhibit an even richer
stationary behaviour, with intriguing critical phenomena that have no analogue in thermal
equiilbrium. They have also proved far more challenging from a theoretical viewpoint,
with many fundamental issues still under debate. Building on recent experimental work on
quasi-one-dimensional diffusive interacting particle systems in equilibrium, the quantita-
tive investigation of driven systems is likely to become feasible in the near future. It will
certainly turn out be a rewarding field of research.
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