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Abstract

We study transport properties such as conductance and diffusion of complex net-
works such as scale-free and BsdRenyi networks. We consider the equivalent con-
ductance’ between two arbitrarily chosen nodes of random scale-free networks with
degree distributioP (k) ~ k~* and Erds-Renyi networks in which each link has the
same unit resistance. Our theoretical analysis for scale-free networks predicts a broad
range of values of7 (or the related diffusion constaft), with a power-law tail distri-
bution ®sr (G) ~ G79¢, wherege = 2A — 1. We confirm our predictions by simu-
lations of scale-free networks solving the Kirchhoff equations for the conductance be-
tween a pair of nodes. The power-law tailigr (G) leads to large values ¢f, thereby
significantly improving the transport in scale-free networks, compared tosErényi
networks where the tail of the conductivity distribution decays exponentially. Based
on a simple physical “transport backbone” picture we suggest that the conductances
of scale-free and Efib-Renyi networks can be approximated &yakp/(ka + k)
for any pair of nodesA and B with degreest4 andkg. Thus, a single parameter
characterizes transport on both scale-free an@&Renyi networks.

1 Introduction

Diffusion in many random structures is “anomalous,” i.e., fundamentally different than that
in regular space [1, 2, 3]. The anomaly is due to the random substrate on which diffusion
is constrained to take place. Random structures are found in many places in the real world,
from oil reservoirs to the Internet, making the study of anomalous diffusion properties a
far-reaching field. In this problem, it is paramount to relate the structural properties of the
medium with the diffusion properties.

An important and recent example of random substrates is that of complex networks.
Research on this topic has uncovered their importance for real-world problems as diverse
as the World Wide Web and the Internet to cellular networks and sexual-partner networks
[4].

Two distinct models describe the two limiting cases for the structure of the complex
networks. The first of these is the classic &edenyi model of random networks [5], for
which sites are connected with a link with probabilityand disconnected (no link) with
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probabilityl—p (see Fig. 1). In this case, the degree distribution (distribution of the number
of connections of a link) is a Poisson distribution

1)

(a) )

Figure 1: (a) Schematic of an ErstRenyi network ofN = 12 andp = 1/6. Note that in
this example ten nodes hake= 2 connections, and two nodes have= 1 connections.
This illustrates the fact that for Edd-Renyi networks, the range of values of degree is very
narrow, typically close td. (b) Schematic of a scale-free network§f= 12, ki, = 2
and)\ ~ 2. We note the presence of a hub with., = 8 which is connected to many of
the other links of the network.

wherek = Y72 | kP(k) is the average degree of the network. Mathematicians dis-
covered critical phenomena through this model. For instance, just as in percolation on
lattices, there is a critical valye = p. above which the largest connected component of
the network has a mass that scales with the system/gjzZsut belowp.., there are only
small clusters of the order &ég V. Another charateristic of an Ebg-Renyi network is its
“small-world” property which means that the average distaha diameter) between all
pairs of nodes of the network scaleslag N [6]. The other model, recently identified as
the characterizing topological structure of many real world systems, is the &aalbert
scale-free network [7], characterized by a scale-free degree distribution:

P(k) ~ k™ [kmin <k < Kmax), @)

The cutoff valuek,,;, represents the minimum allowed value /ofon the network
(kmin = 2 here), andkmax = kmin N/ 1| the typical maximum degree of a network
with N nodes [8, 9]. The scale-free feature allows a network to have some nodes with a
large number of links (“hubs”), unlike the case for the &denyi model of random net-
works [5, 6]. Scale-free networks with > 3 haved ~ log IV, while for2 < A < 3 they
are “ultra-small-world” since the diameter scaleslas loglog N [4, 8].

Here we review our recent study of transport in complex networks [10]. We find that for
scale-free networks with > 2, transport properties characterized by conductance display
a power-law tail distribution that is related to the degree distribuifdh). The origin of
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this power-law tail is due to pairs of nodes of high degree which have high conductance.
Thus, transport in scale-free networks is better than ib&#enyi random networks since

the high degree nodes carry much of the traffic in the network. Also, we present a simple
physical picture of transport in scale-free and &dRenyi networks and test it through
simulations. The results of our study are relevant to problems of diffusion in scale-free
networks, given that conductivity and diffusivity are related by the Einstein relation [1, 2,
3]. Due to the exponential decay of the degree distribution@&fEnyi networks lack

hubs and their properties, including transport, are controlled mainly by the average degree
k. [6, 11].

2 Transport in complex networks

Most of the work done so far regarding complex networks has concentrated on static topo-
logical properties or on models for their growth [4, 8, 12, 13]. Transport features have not

been extensively studied with the exception of random walks on specific complex networks
[14, 15, 16]. Transport properties are important because they contain information about net-
work function [17]. Here, we study the electrical conductaideetween two noded and

B of Erdds-Renyi and scale-free networks when a potential difference is imposed between

them. We assume that all the links have equal resistances of unit value [18].

To construct an Er@ks-Renyi network, we begin withiV nodes and connect each pair
with probability p. To generate a scale-free network withnodes, we use the Molloy-
Reed algorithm [19], which allows for the construction of random networks with arbitrary
degree distribution. We generatgcopies of each nodg where the probability of having
k; satisfiesP(k;) ~ k;*. We then randomly pair these copies of the nodes in order to
construct the network, making sure that two previously-linked nodes are not connected
again, and also excluding links of a node to itself [20].

We calculate the conductanckof the network between two nodesand B using the
Kirchhoff method, [21], where entering and exiting potentials are fixelf fo= 1 and
Ve = 0. We solve a set of linear equations to determine the poteritjats all nodes
of the network. Finally, the total currerit = G entering at noded and exiting at node
B is computed by adding the outgoing currents frdimo its nearest neighbors through
>_;(Va —Vj;), wherej runs over the neighbors of.

First, we analyze the probability density function (p@f)z) which comes fron® (G)dG,
the probability that two nodes on the network have conductance beteen G + dG.

To this end, we introduce the cumulative distributiBiG) = [~ ®(G’)dG’, shown in
Fig. 2(a) for the Erds-Renyi and scale-free\(= 2.5 and\ = 3.3, with k,;,, = 2) cases.
We use the notatio®sr(G) and Fgr(G) for scale-free, and®gr (G) and Fygr(G) for
Erdds-Renyi. The functionFsg(G) for both A = 2.5 and 3.3 exhibits a tail region well fit
by the power law

Fsp(G) ~ G—(gc—1)7 )

and the exponer(ys — 1) increases with\. In contrast,Fgr (G) decreases exponen-
tially with G.

Diffusion Fundamentals 2 (2005) 4.1 - 4.11 3



10 =

TR " Erdbs—Rényi|
NN\ —— (A=2.5) SF
L@ NN (\=3.3) SF 102 |
10 L N
\\
\ 10"
107 \
\\\ IO-G
\\
10° 10°
10™ 10° 10' 10° 107 10° 10' 10°
Conductance G Conductance G

Figure 2: (a) Comparison for networks witi = 8000 nodes between the cumulative
distribution functions of conductance for the BsdRenyi and the scale-free cases (with
A = 2.5 and 3.3). Each curve represents the cumulative distribufig®) vs. G. The
simulations have at least® realizations. (b) Effect of system size éir(G) vs. G for
the case\ = 2.5. The cutoff value of the maximum conductanGe,,, progressively
increases a8’ increases.

IncreasingV does not significantly changer (G) (Fig. 2(b)) except for an increase in
the upper cutoff7 ..., WhereG,.x is the typical maximum conductance, corresponding
to the value ofG at which®sr(G) crosses over from a power law to a faster decay. We
observe no change of the expongatwith V. The increase of7,,,., with N implies that
the average conductanceover all pairs also increases slightly [22].

We next study the origin of the large values @fin scale-free networks and obtain
an analytical relation betweenandgg. Larger values of5 require the presence of many
parallel paths, which we hypothesize arise from the high degree nodes. Thus, we expect that
if either of the degreek,4 or kg of the entering and exiting nodes is small (g.> kg),
the conductancé’ betweenA and B is small since there are at mdsdifferent parallel
branches coming out of a node with degfeeThus, a small value of implies a small
number of possible parallel branches, and therefore a small vatle T observe largér
values, it is therefore necessary that bbthandk g be large.

We test this hypothesis by large scale computer simulations of the conditional pdf
Osr(Glka, k) for specific values of the entering and exiting node degkeeandk .
Consider firsttg < k4, and the effect of increasinggs, with k4 fixed. We find that
Dsr(Glka, kp) is narrowly peaked (Fig. 3(a)) so that it is well characterizeddsy
the value ofG when ®gr is a maximum. We find similar results for EistRenyi net-
works. Further, for increasingz, we find [Fig. 3(b)]G* increases a&'™* ~ k%, with
a = 0.96 £+ 0.05 consistent with the possibility that & — oo, « = 1 which we assume
henceforth.

For the case okp = k4, G* increases less fast thasm, as can be seen in Fig. 3(c)

~

where we plotG* /kp against the scaled degree= k4 /kg. The collapse o&G* /kp for

Diffusion Fundamentals 2 (2005) 4.1 - 4.11 4



N

ey
o

10° | k= 19
‘ 6 3 ]
! o 18 g
" | } -3
| S o
10 : §
0 ! 10 10
. | S
10 | & ®)
10" 3 “ §
10° G 10 10° 10' 10°
Conductance G k,, degree of node B

0

10

+ Transport
@] Backblzme

£ (c)
107 10" 10° 10" 10
Scaled Degree x=k /k,

2

Figure 3: (a) The pd®sr(G|ka, kp) vs. G for N = 8000, A = 2.5 andk4 = 750 (k4 is

close to the typical maximum degrig.. = 800 for N = 8000). (b) Most probable values

G*, estimated from the maxima of the distributions in Fig. 3(a), as a function of the degree
kp. The data support a power law behawvist ~ k% with o = 0.96+0.05. (c) Scaled most
probable conductand@*/kp vs. scaled degree = k4 /kp for system sizeV = 8000

and) = 2.5, for several values ot 4 andkg: O (ks = 8,8 < kg < 750), & (ka = 16,

16 < kp < 750), A (ka = 750, 4 < kg < 128), O (kg = 4,4 < ka < 750), v

(kp = 256, 256 < k4 < 750), and> (kg = 500, 4 < k4 < 128). The curve crossing the
symbols is the predicted functi@i* /kp = f(z) = cz/(1+ x) obtained from Eq. (7). We
also showG* /kp vs. scaled degree = k4 /kp for Erdos-Renyi networks withk = 2.92,

4 < ks < 11 andkp = 4 (symbole). The curve crossing the symbols represents the
theoretical result according to Eq. (7), and an extension of this line to represent the limiting
value of G* /k 5 (dotted-dashed line). The probability to obt&in > 11 is extremely small

in Erdds-Renyi networks, and thus we are unable to obtain significant statistics. Scaling
function f(x), as seen here, exhibits a crossover from a linear behavior to the constant
(¢ = 0.87 + 0.02 for scale-free networks, horizontal dashed line, and 0.55 + 0.01

for Erdds-Renyi, dotted line). The inset shows a schematic of the “transport backbone”
picture, where the circles labeleland B denote nodegl and B and their associated links
which do not belong to the “transport backbone”.
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different values ok 4 andk g indicates that7* scales as

G* ~ kpf (:g) . @)

Below we study the possible origin of this function.

3 Transport backbone picture

The behavior of the scaling functiof{x) can be interpreted using the following simpli-
fied “transport backbone” picture [Fig. 3(c) inset], for which the effective conducté&hce
between noded and B satisfies

1 1 1 1
N T T 5
G a.ta, Tay ®)

wherel/Gy, is the resistance of the “transport backbone” whijlé 4 (and1/G ) are the
resistances of the set of bonds near ndd@nd nodeB) not belonging to the “transport
backbone”. It is plausible that 4 is linear ink 4, SO we can writ&7 4 = ck4. Since node
B is equivalent to nodel, we expectGp = ckp. Hence

Q- 1 —k CkA/kB (6)
71/C]<2A+1/C]€B+1/th7 Bl—|—kA/k‘B+Ck‘A/th’
so the scaling function defined in Eq. (4) is
CT CT
f(x) @)

- 1+x+cka/Guw T 14z

The second equality follows if there are many parallel paths on the “transport backbone” so
thatl/Gy < 1/ck 4 [23]. The prediction (7) is plotted in Fig. 3(c) for both scale-free and
Erdds-Renyi networks and the agreement with the simulations supports the approximate
validity of the transport backbone picture of conductance in scale-free aris-Rehyi
networks.

The agreement of (7) with simulations has a striking implication: the conductance of
a scale-free and Eéd-Renyi network (scale-free and Eis-Renyi) depends on only one
parametet. Further, since the distribution of Fig. 3(a) is sharply peaked, a single measure-
ment of G for any values of the degreés, andkp of the entrance and exit nodes suffices
to determine*, which then determinesand hence through Eq. (7) the conductance for
all values oft 4 andkp.

Within this “transport backbone” picture, we can analytically calculate(G). Using
Eg. (4), and the fact thaksr (G|k 4, k) is narrow, yields [24]

Psr(G) ~ /P(kB)dkB/P(kA)dkA5 {ka (:;) - G} ; (8)
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whered(z) is the Dirac delta function. Performing the integration of Eq. (8) using (7), we
obtain forG < Gmax

(I)SF(G) ~ G79¢ [g(; =2\ — 1]. (9)

Hence, forFsp(G), we haveFsr(G) ~ G~(22A=2)_ To test this prediction, we perform
simulations for scale-free networks and calculate the valugg of 1 from the slope of a

log-log plot of the cumulative distributiofsr (G). From Fig. 4(b) we find that
gc —1=1(1.97£0.04)\ — (2.01 £ 0.13). (10)

Thus, the measured slopes are consistent with the theoretical values predicted by Eq. (9)
[25].
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Figure 4: (a) Simulation results for the cumulative distributiB-(G) for A between
2.5 and 3.5, consistent with the power ldyr ~ G~ (cf. Eq. (9)), showing the
progressive change of the sloge — 1. (b) The exponenj — 1 from simulations (circles)
with 2.5 < A < 4.5; shown also is aleast squaregffif—1 = (1.97+0.04)A—(2.01£0.13),
consistent with the predicted expressigh— 1 = 2\ — 2 [cf. Eq. (9)].

The transport backbone conductar€g of scale-free networks can also be studied
through its pdf¥sr (see Fig. 5). To determin€y,, we consider the contribution to the
conductance of the part of the network with paths betwéeand B, excluding the con-
tributions from the vicinities of noded and B, which are determined by the parameter
The most relevant feature in Fig. 5 is that, for a givemalue, both¥Usy and®(G) have
equal decay exponents, suggesting that they are also relatembkt&q. (10). Figure 5 also
shows that the values 6f;; are significantly larger tha6.

4 Discussion

Next, we consider some further implications of our work. Our results show that larger
values ofGG are found in scale-free networks with a much larger probability than id<=rd
Rényi networks, which raises the question if scale-free networks have better transport than
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Figure 5: Comparison of pdf (Gy,) and®(G) for networks of N = 8000 for two values
of \.

Erdds-Renyi networks. To answer this question, we consider the average conductance
between all the pairs of nodes in the network, which quantifies how efficient is the transport.
However, since scale-free networks are heterogeneous in their degree, we must find a way
to assign proper weights to the nodes. Recent work [26, 27, 28] suggests that in certain
real-world networks, e.g. World-Ariline-Network [26] and biological networks [27], the
conductances of links between nodesnd;j are characterized biy; k;)?, with 3 = 1/2.
Assuming this weight, and comparing scale-free andEs#f&Enyi networks with the same
values of average degré¢29], we find that the average conductance of scale-free networks

is larger than that of Edis-Renyi networks (Table 1). Even larger average conductance for
scale-free networks compared to BsdRenyi networks (Table 1) is obtained if one assumes
[14] 8 = 1, i.e., that transport occurs with frequency proportional to the degree of the node.
The case ofi = 0 represents a “democratic” average, where all the pairs of nddasd

B are given the same weight. This case, which is not justified for heterogeneous networks,
yields average conductance values for scale-free networks close to thosédsfREryi
networks (Table 1). In many real-world systems, degree dependent link conductances and
frequent use of high degree nodes both occur, making transport on scale-free networks even
more efficient than transport on EistRenyi networks.

Finally, we point out that our study needs to be extended further. For instance, it has
been found recently that many real-world scale-free networks posses fractal properties [30].
However, random scale-free and BsdRenyi networks, which are the subject of this study,
do not display fractality. Since fractal substrates also lead to anomalous transport [1, 2, 3],
it would be interesting to explore the effect of fractality on diffusion and conductance in
fractal networks. This case is expected to have anomalous effects due to both the hetero-
geneity of the degree distribution and to the fractality of the network. Another interesting
feature that should be studied is the effect on conductivity and diffusion of the correlation
between distance of two nodes and their degree [31].
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scale-free|| 5 =1 8=1/2 8=0
Ak Gsr (Ger) | Gsr (Ger) | Gsr (GER)
25|53 55(.1) 2.4 (2.0) 1.3(1.9)
27| 4.3 | 2.7(1.5) 1.8(1.5) 1.1(1.4)
29|37 17@1.2 1.4(1.2) 0.9(1.2)
3.1]34 | 1.3(1.0) 1.1(0.9) 0.8 (0.9)
3.3|31 | 1.0(0.9 1.0(0.8) 0.7 (0.7)
3.5]29 | 0.8(0.7) 0.8(0.7) 0.6 (0.7)

Table 1: Values of average conductance of scale-free aniisERenyi networks for link
weights defined ak;k;)”. In parenthesis we have indicated the values of the correspond-
ing Erdbs-Renyi networks.

5 Summary

In summary, we find that the conductance of scale-free networks is highly heterogeneous,
and depends strongly on the degree of the two netdasd B. Our results suggest that the
diffusion constants are also heterogeneous in these networks, and depend on the degrees of
the starting and ending nodes. We also find a power-law taibfgr(G) and relate the tail
exponenyy to the exponenh of the degree distributio®? (k). This power law behavior
makes scale-free networks better for tranport. Our work is consistent with a simple physical
picture of how transport takes place in scale-free an@&fnyi networks. This, so called
“transport backbone” picture consists of the nodesnd B and their vicinities, and the rest

of the network, which consititutes the transport backbone. Because of the great number of
parallel paths contained in the transport backbone, transport takes place inside with very
small resistance, and therefore the dominating effect of resistance comes from the vicinity
of the node 4 or B) with the smallest degree.

We thank the Office of Naval Research, the Israel Science Foundation, and the European
NEST project DYSONET for financial support, and L. Braunstein, S. Carmi, R. Cohen, E.
Perlsman, G. Paul, S. Sreenivasan, T. Tanizawa, and Z. Wu for discussions.
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