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Abstract

We study transport properties such as conductance and diffusion of complex net-
works such as scale-free and Erdős-Ŕenyi networks. We consider the equivalent con-
ductanceG between two arbitrarily chosen nodes of random scale-free networks with
degree distributionP (k) ∼ k−λ and Erd̋os-Ŕenyi networks in which each link has the
same unit resistance. Our theoretical analysis for scale-free networks predicts a broad
range of values ofG (or the related diffusion constantD), with a power-law tail distri-
butionΦSF(G) ∼ G−gG , wheregG = 2λ − 1. We confirm our predictions by simu-
lations of scale-free networks solving the Kirchhoff equations for the conductance be-
tween a pair of nodes. The power-law tail inΦSF(G) leads to large values ofG, thereby
significantly improving the transport in scale-free networks, compared to Erdős-Ŕenyi
networks where the tail of the conductivity distribution decays exponentially. Based
on a simple physical “transport backbone” picture we suggest that the conductances
of scale-free and Erd̋os-Ŕenyi networks can be approximated byckAkB/(kA + kB)
for any pair of nodesA andB with degreeskA andkB . Thus, a single parameterc
characterizes transport on both scale-free and Erdős-Ŕenyi networks.

1 Introduction

Diffusion in many random structures is “anomalous,” i.e., fundamentally different than that
in regular space [1, 2, 3]. The anomaly is due to the random substrate on which diffusion
is constrained to take place. Random structures are found in many places in the real world,
from oil reservoirs to the Internet, making the study of anomalous diffusion properties a
far-reaching field. In this problem, it is paramount to relate the structural properties of the
medium with the diffusion properties.

An important and recent example of random substrates is that of complex networks.
Research on this topic has uncovered their importance for real-world problems as diverse
as the World Wide Web and the Internet to cellular networks and sexual-partner networks
[4].

Two distinct models describe the two limiting cases for the structure of the complex
networks. The first of these is the classic Erdős-Ŕenyi model of random networks [5], for
which sites are connected with a link with probabilityp and disconnected (no link) with
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probability1−p (see Fig. 1). In this case, the degree distribution (distribution of the number
of connections of a link) is a Poisson distribution

P (k) ∼ (k)ke−k

k!
, (1)

(a) (b)

Figure 1: (a) Schematic of an Erdős-Ŕenyi network ofN = 12 andp = 1/6. Note that in
this example ten nodes havek = 2 connections, and two nodes havek = 1 connections.
This illustrates the fact that for Erdős-Ŕenyi networks, the range of values of degree is very
narrow, typically close tok. (b) Schematic of a scale-free network ofN = 12, kmin = 2
andλ ≈ 2. We note the presence of a hub withkmax = 8 which is connected to many of
the other links of the network.

wherek ≡
∑∞

k=1 kP (k) is the average degree of the network. Mathematicians dis-
covered critical phenomena through this model. For instance, just as in percolation on
lattices, there is a critical valuep = pc above which the largest connected component of
the network has a mass that scales with the system sizeN , but belowpc, there are only
small clusters of the order oflog N . Another charateristic of an Erdős-Ŕenyi network is its
“small-world” property which means that the average distanced (or diameter) between all
pairs of nodes of the network scales aslog N [6]. The other model, recently identified as
the characterizing topological structure of many real world systems, is the Barabási-Albert
scale-free network [7], characterized by a scale-free degree distribution:

P (k) ∼ k−λ [kmin ≤ k ≤ kmax], (2)

The cutoff valuekmin represents the minimum allowed value ofk on the network
(kmin = 2 here), andkmax ≡ kminN1/(λ−1), the typical maximum degree of a network
with N nodes [8, 9]. The scale-free feature allows a network to have some nodes with a
large number of links (“hubs”), unlike the case for the Erdős-Ŕenyi model of random net-
works [5, 6]. Scale-free networks withλ > 3 haved ∼ log N , while for 2 < λ < 3 they
are “ultra-small-world” since the diameter scales asd ∼ log log N [4, 8].

Here we review our recent study of transport in complex networks [10]. We find that for
scale-free networks withλ ≥ 2, transport properties characterized by conductance display
a power-law tail distribution that is related to the degree distributionP (k). The origin of
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this power-law tail is due to pairs of nodes of high degree which have high conductance.
Thus, transport in scale-free networks is better than in Erdős-Ŕenyi random networks since
the high degree nodes carry much of the traffic in the network. Also, we present a simple
physical picture of transport in scale-free and Erdős-Ŕenyi networks and test it through
simulations. The results of our study are relevant to problems of diffusion in scale-free
networks, given that conductivity and diffusivity are related by the Einstein relation [1, 2,
3]. Due to the exponential decay of the degree distribution, Erdős-Ŕenyi networks lack
hubs and their properties, including transport, are controlled mainly by the average degree
k. [6, 11].

2 Transport in complex networks

Most of the work done so far regarding complex networks has concentrated on static topo-
logical properties or on models for their growth [4, 8, 12, 13]. Transport features have not
been extensively studied with the exception of random walks on specific complex networks
[14, 15, 16]. Transport properties are important because they contain information about net-
work function [17]. Here, we study the electrical conductanceG between two nodesA and
B of Erdős-Ŕenyi and scale-free networks when a potential difference is imposed between
them. We assume that all the links have equal resistances of unit value [18].

To construct an Erd̋os-Ŕenyi network, we begin withN nodes and connect each pair
with probability p. To generate a scale-free network withN nodes, we use the Molloy-
Reed algorithm [19], which allows for the construction of random networks with arbitrary
degree distribution. We generateki copies of each nodei, where the probability of having
ki satisfiesP (ki) ∼ k−λ

i . We then randomly pair these copies of the nodes in order to
construct the network, making sure that two previously-linked nodes are not connected
again, and also excluding links of a node to itself [20].

We calculate the conductanceG of the network between two nodesA andB using the
Kirchhoff method, [21], where entering and exiting potentials are fixed toVA = 1 and
VB = 0. We solve a set of linear equations to determine the potentialsVi of all nodes
of the network. Finally, the total currentI ≡ G entering at nodeA and exiting at node
B is computed by adding the outgoing currents fromA to its nearest neighbors through∑

j(VA − Vj), wherej runs over the neighbors ofA.
First, we analyze the probability density function (pdf)Φ(G) which comes fromΦ(G)dG,

the probability that two nodes on the network have conductance betweenG andG + dG.
To this end, we introduce the cumulative distributionF (G) ≡

∫∞
G

Φ(G′)dG′, shown in
Fig. 2(a) for the Erd̋os-Ŕenyi and scale-free (λ = 2.5 andλ = 3.3, with kmin = 2) cases.
We use the notationΦSF(G) andFSF(G) for scale-free, andΦER(G) andFER(G) for
Erdős-Ŕenyi. The functionFSF(G) for bothλ = 2.5 and 3.3 exhibits a tail region well fit
by the power law

FSF(G) ∼ G−(gG−1), (3)

and the exponent(gG − 1) increases withλ. In contrast,FER(G) decreases exponen-
tially with G.

Diffusion Fundamentals 2 (2005) 4.1 - 4.11 3



10−1 100 101 102

Conductance G

10−6

10−4

10−2

100

C
um

ul
at

iv
e 

D
is

tr
ib

ut
io

n 
F

(G
)

Erdos−Renyi
(λ=2.5) SF
(λ=3.3) SF(a)

’’’

10−1 100 101 102

Conductance G

10−8

10−6

10−4

10−2

100

C
um

ul
at

iv
e 

D
is

tr
ib

ut
io

n 
F

SF
(G

)

N=125
250
500
1000
2000

(b)

Figure 2: (a) Comparison for networks withN = 8000 nodes between the cumulative
distribution functions of conductance for the Erdős-Ŕenyi and the scale-free cases (with
λ = 2.5 and 3.3). Each curve represents the cumulative distributionF (G) vs. G. The
simulations have at least106 realizations. (b) Effect of system size onFSF(G) vs. G for
the caseλ = 2.5. The cutoff value of the maximum conductanceGmax progressively
increases asN increases.

IncreasingN does not significantly changeFSF(G) (Fig. 2(b)) except for an increase in
the upper cutoffGmax, whereGmax is the typical maximum conductance, corresponding
to the value ofG at whichΦSF(G) crosses over from a power law to a faster decay. We
observe no change of the exponentgG with N . The increase ofGmax with N implies that
the average conductanceG over all pairs also increases slightly [22].

We next study the origin of the large values ofG in scale-free networks and obtain
an analytical relation betweenλ andgG. Larger values ofG require the presence of many
parallel paths, which we hypothesize arise from the high degree nodes. Thus, we expect that
if either of the degreeskA or kB of the entering and exiting nodes is small (e.g.kA > kB),
the conductanceG betweenA andB is small since there are at mostk different parallel
branches coming out of a node with degreek. Thus, a small value ofk implies a small
number of possible parallel branches, and therefore a small value ofG. To observe largeG
values, it is therefore necessary that bothkA andkB be large.

We test this hypothesis by large scale computer simulations of the conditional pdf
ΦSF(G|kA, kB) for specific values of the entering and exiting node degreeskA andkB .
Consider firstkB � kA, and the effect of increasingkB , with kA fixed. We find that
ΦSF(G|kA, kB) is narrowly peaked (Fig. 3(a)) so that it is well characterized byG∗,
the value ofG whenΦSF is a maximum. We find similar results for Erdős-Ŕenyi net-
works. Further, for increasingkB , we find [Fig. 3(b)]G∗ increases asG∗ ∼ kα

B , with
α = 0.96 ± 0.05 consistent with the possibility that asN → ∞, α = 1 which we assume
henceforth.

For the case ofkB & kA, G∗ increases less fast thankB , as can be seen in Fig. 3(c)
where we plotG∗/kB against the scaled degreex ≡ kA/kB . The collapse ofG∗/kB for
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Figure 3: (a) The pdfΦSF(G|kA, kB) vs. G for N = 8000, λ = 2.5 andkA = 750 (kA is
close to the typical maximum degreekmax = 800 for N = 8000). (b) Most probable values
G∗, estimated from the maxima of the distributions in Fig. 3(a), as a function of the degree
kB . The data support a power law behaviorG∗ ∼ kα

B with α = 0.96±0.05. (c) Scaled most
probable conductanceG∗/kB vs. scaled degreex ≡ kA/kB for system sizeN = 8000
andλ = 2.5, for several values ofkA andkB : 2 (kA = 8, 8 ≤ kB ≤ 750), ♦ (kA = 16,
16 ≤ kB ≤ 750), 4 (kA = 750, 4 ≤ kB ≤ 128), © (kB = 4, 4 ≤ kA ≤ 750), 5
(kB = 256, 256 ≤ kA ≤ 750), and. (kB = 500, 4 ≤ kA ≤ 128). The curve crossing the
symbols is the predicted functionG∗/kB = f(x) = cx/(1+x) obtained from Eq. (7). We
also showG∗/kB vs. scaled degreex ≡ kA/kB for Erdős-Ŕenyi networks withk = 2.92,
4 ≤ kA ≤ 11 andkB = 4 (symbol•). The curve crossing the symbols represents the
theoretical result according to Eq. (7), and an extension of this line to represent the limiting
value ofG∗/kB (dotted-dashed line). The probability to obtainkA > 11 is extremely small
in Erdős-Ŕenyi networks, and thus we are unable to obtain significant statistics. Scaling
functionf(x), as seen here, exhibits a crossover from a linear behavior to the constantc
(c = 0.87 ± 0.02 for scale-free networks, horizontal dashed line, andc = 0.55 ± 0.01
for Erdős-Ŕenyi, dotted line). The inset shows a schematic of the “transport backbone”
picture, where the circles labeledA andB denote nodesA andB and their associated links
which do not belong to the “transport backbone”.
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different values ofkA andkB indicates thatG∗ scales as

G∗ ∼ kBf

(
kA

kB

)
. (4)

Below we study the possible origin of this function.

3 Transport backbone picture

The behavior of the scaling functionf(x) can be interpreted using the following simpli-
fied “transport backbone” picture [Fig. 3(c) inset], for which the effective conductanceG
between nodesA andB satisfies

1
G

=
1

GA
+

1
Gtb

+
1

GB
, (5)

where1/Gtb is the resistance of the “transport backbone” while1/GA (and1/GB) are the
resistances of the set of bonds near nodeA (and nodeB) not belonging to the “transport
backbone”. It is plausible thatGA is linear inkA, so we can writeGA = ckA. Since node
B is equivalent to nodeA, we expectGB = ckB . Hence

G =
1

1/ckA + 1/ckB + 1/Gtb
= kB

ckA/kB

1 + kA/kB + ckA/Gtb
, (6)

so the scaling function defined in Eq. (4) is

f(x) =
cx

1 + x + ckA/Gtb
≈ cx

1 + x
. (7)

The second equality follows if there are many parallel paths on the “transport backbone” so
that1/Gtb � 1/ckA [23]. The prediction (7) is plotted in Fig. 3(c) for both scale-free and
Erdős-Ŕenyi networks and the agreement with the simulations supports the approximate
validity of the transport backbone picture of conductance in scale-free and Erdős-Ŕenyi
networks.

The agreement of (7) with simulations has a striking implication: the conductance of
a scale-free and Erdős-Ŕenyi network (scale-free and Erdős-Ŕenyi) depends on only one
parameterc. Further, since the distribution of Fig. 3(a) is sharply peaked, a single measure-
ment ofG for any values of the degreeskA andkB of the entrance and exit nodes suffices
to determineG∗, which then determinesc and hence through Eq. (7) the conductance for
all values ofkA andkB .

Within this “transport backbone” picture, we can analytically calculateFSF(G). Using
Eq. (4), and the fact thatΦSF(G|kA, kB) is narrow, yields [24]

ΦSF(G) ∼
∫

P (kB)dkB

∫
P (kA)dkAδ

[
kBf

(
kA

kB

)
−G

]
, (8)
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whereδ(x) is the Dirac delta function. Performing the integration of Eq. (8) using (7), we
obtain forG < Gmax

ΦSF(G) ∼ G−gG [gG = 2λ− 1]. (9)

Hence, forFSF(G), we haveFSF(G) ∼ G−(2λ−2). To test this prediction, we perform
simulations for scale-free networks and calculate the values ofgG − 1 from the slope of a
log-log plot of the cumulative distributionFSF(G). From Fig. 4(b) we find that

gG − 1 = (1.97± 0.04)λ− (2.01± 0.13). (10)

Thus, the measured slopes are consistent with the theoretical values predicted by Eq. (9)
[25].
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Figure 4: (a) Simulation results for the cumulative distributionFSF(G) for λ between
2.5 and 3.5, consistent with the power lawFSF ∼ G−(gG−1) (cf. Eq. (9)), showing the
progressive change of the slopegG−1. (b) The exponentgG−1 from simulations (circles)
with 2.5 < λ < 4.5; shown also is a least square fitgG−1 = (1.97±0.04)λ−(2.01±0.13),
consistent with the predicted expressiongG − 1 = 2λ− 2 [cf. Eq. (9)].

The transport backbone conductanceGtb of scale-free networks can also be studied
through its pdfΨSF (see Fig. 5). To determineGtb, we consider the contribution to the
conductance of the part of the network with paths betweenA andB, excluding the con-
tributions from the vicinities of nodesA andB, which are determined by the parameterc.
The most relevant feature in Fig. 5 is that, for a givenλ value, bothΨSF andΦ(G) have
equal decay exponents, suggesting that they are also related toλ as Eq. (10). Figure 5 also
shows that the values ofGtb are significantly larger thanG.

4 Discussion

Next, we consider some further implications of our work. Our results show that larger
values ofG are found in scale-free networks with a much larger probability than in Erdős-
Rényi networks, which raises the question if scale-free networks have better transport than
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Figure 5: Comparison of pdfΨ(Gtb) andΦ(G) for networks ofN = 8000 for two values
of λ.

Erdős-Ŕenyi networks. To answer this question, we consider the average conductance
between all the pairs of nodes in the network, which quantifies how efficient is the transport.
However, since scale-free networks are heterogeneous in their degree, we must find a way
to assign proper weights to the nodes. Recent work [26, 27, 28] suggests that in certain
real-world networks, e.g. World-Ariline-Network [26] and biological networks [27], the
conductances of links between nodesi andj are characterized by(kikj)β , with β = 1/2.
Assuming this weight, and comparing scale-free and Erdős-Ŕenyi networks with the same
values of average degreek [29], we find that the average conductance of scale-free networks
is larger than that of Erd̋os-Ŕenyi networks (Table 1). Even larger average conductance for
scale-free networks compared to Erdős-Ŕenyi networks (Table 1) is obtained if one assumes
[14] β = 1, i.e., that transport occurs with frequency proportional to the degree of the node.
The case ofβ = 0 represents a “democratic” average, where all the pairs of nodesA and
B are given the same weight. This case, which is not justified for heterogeneous networks,
yields average conductance values for scale-free networks close to those of Erdős-Ŕenyi
networks (Table 1). In many real-world systems, degree dependent link conductances and
frequent use of high degree nodes both occur, making transport on scale-free networks even
more efficient than transport on Erdős-Ŕenyi networks.

Finally, we point out that our study needs to be extended further. For instance, it has
been found recently that many real-world scale-free networks posses fractal properties [30].
However, random scale-free and Erdős-Ŕenyi networks, which are the subject of this study,
do not display fractality. Since fractal substrates also lead to anomalous transport [1, 2, 3],
it would be interesting to explore the effect of fractality on diffusion and conductance in
fractal networks. This case is expected to have anomalous effects due to both the hetero-
geneity of the degree distribution and to the fractality of the network. Another interesting
feature that should be studied is the effect on conductivity and diffusion of the correlation
between distance of two nodes and their degree [31].
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scale-free β = 1 β = 1/2 β = 0
λ k GSF (GER) GSF (GER) GSF (GER)
2.5 5.3 5.5 (2.1) 2.4 (2.0) 1.3 (1.9)
2.7 4.3 2.7 (1.5) 1.8 (1.5) 1.1 (1.4)
2.9 3.7 1.7 (1.2) 1.4 (1.2) 0.9 (1.1)
3.1 3.4 1.3 (1.0) 1.1 (0.9) 0.8 (0.9)
3.3 3.1 1.0 (0.9) 1.0 (0.8) 0.7 (0.7)
3.5 2.9 0.8 (0.7) 0.8 (0.7) 0.6 (0.7)

Table 1: Values of average conductance of scale-free and Erdős-Ŕenyi networks for link
weights defined as(kikj)β . In parenthesis we have indicated the values of the correspond-
ing Erd̋os-Ŕenyi networks.

5 Summary

In summary, we find that the conductance of scale-free networks is highly heterogeneous,
and depends strongly on the degree of the two nodesA andB. Our results suggest that the
diffusion constants are also heterogeneous in these networks, and depend on the degrees of
the starting and ending nodes. We also find a power-law tail forΦSF (G) and relate the tail
exponentgG to the exponentλ of the degree distributionP (k). This power law behavior
makes scale-free networks better for tranport. Our work is consistent with a simple physical
picture of how transport takes place in scale-free and Erdős-Ŕenyi networks. This, so called
“transport backbone” picture consists of the nodesA andB and their vicinities, and the rest
of the network, which consititutes the transport backbone. Because of the great number of
parallel paths contained in the transport backbone, transport takes place inside with very
small resistance, and therefore the dominating effect of resistance comes from the vicinity
of the node (A or B) with the smallest degree.

We thank the Office of Naval Research, the Israel Science Foundation, and the European
NEST project DYSONET for financial support, and L. Braunstein, S. Carmi, R. Cohen, E.
Perlsman, G. Paul, S. Sreenivasan, T. Tanizawa, and Z. Wu for discussions.
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