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Abstract 
Fluid transport by flow in random porous media is subject to hydrodynamic 

dispersion. In a series of pulsed field-gradient NMR experiments, we have compared 
flow induced by pressure gradients on the one hand and by electroosmosis on the other. 
The media were porous glasses with pore dimensions from 1 to 100 μm. With increasing 
flow rates, a crossover from subdiffusive to superdiffusive mean-squared displacement 
laws was observed in both cases. This demonstrates the competition between molecular 
diffusion and convection, and is a typical example of anomalous transport.   

1. Introduction 
The theory of anomalous diffusion is well established. Propagator formalisms have 

been reported both for sub- and superdiffusive mean-squared displacement laws [1]. 
Brownian diffusion in random pore networks is subject to a subdiffusive anomaly in the 
so-called scaling window of the root mean-squared displacement, 2a Z ξ< <  , where a 
is the pore dimension and ξ is the correlation length of the pore network [2].  

Hydrodynamic dispersion of fluids in porous media is a combined effect of Brownian 
diffusion and advection. Three mechanisms may lead to dispersion [3]: (a) Taylor 
dispersion caused by Brownian diffusion of fluid particles across velocity shear; (b) 
mechanical dispersion, an effect of advection along tortuous paths and streamline 
bifurcation; and (c) holdup of fluid particles in the dead ends of pore networks. 

In the long time and large displacement limit [4], the propagator of the molecule (or 
tracer) displacements is expected to be Gaussian [5] and the mean-squared displacement 
<Z2> grows linearly in time t, i.e. 2Z t< >∝ . On the other hand, for length scales within 
the scaling window, particle transport is subject to anomalous laws [4]. The propagator is 
then non-Gaussian, and there is a tendency to power laws of the form 2Z tα< >∝  where 

1α ≠ . If 0 < α < 1, transport is called “subdiffusive” while α >1 indicates 
“superdiffusive” displacement behavior [1]. 
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In the present study, hydrodynamic dispersion effects in disordered porous media in 
the presence of both pressure-induced and electroosmotic flows were examined and 
compared with the aid of pulsed gradient spin echo Nuclear Magnetic Resonance (PGSE-
NMR) techniques [6]. 

2. Experiments 

2.1 Samples and experimental setup 
Disordered porous samples were prepared of VitraPor glasses #1, #C, #4, and #5 with 

nominal pore sizes of 100…160μm, 40…60μm, 10…16μm and 1…1.6μm. Figure 1 
shows typical scanning electron micrographs (SEM) recorded with a Zeiss DSM 962 
scanning electron microscope. The samples used for the dispersion experiments had a 
cylindrical shape with a diameter of 6 mm and a length of 40 mm. They were contained 
in PCTFE (PolyChloroTriFluoroEthylene) sample holders. In order to avoid any 
bypassing of the water, the sample holders were thermally shrunk on the sample cylinders 
by heating them first to 197oC for about 20 min. While being cold, the sample could be 
dropped into the sample holder. After thermal equilibration, it was tightly embraced by 
the PCTFE cylinder and could then no longer be removed without mechanically 
damaging the container. 

Pressure-induced 
flow (PIF) was 
produced at constant 
flow rates of 0.1…0.9 
ml/min by pumping 
degassed distilled 
water at room 
temperature. The flow 
rates can be varied in 
steps of 0.1 ml/min. 
The experimental setup 
is shown schematically 
in Fig. 2 (a). The 
arrows indicate the 
flow direction. 

 Electroosmotic 
flow (EOF) is a 
transport phenomenon 
induced by applying an 
electric field on a 
liquid electrolyte 
solution in channels 
with polar walls. 
Problems arising 

because of Joule heating [7], [8] and effects of the oxidation and reduction processes on 
the electrode surfaces [8], must be carefully taken into account. U-shape design [8] of the 

(c)                                               (d)

(a)                                               (b) 

Fig. 1 Typical SEM images of (a) VitraPor #1, (b) VitraPor 
#C, (c) VitraPor #4, and (d) VitraPor #5 samples with 
nominal pore sizes of 100…160μm, 40…60μm, 10…16μm 
and 1…1.6μm, respectively. 
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electrolyte cell avoids trapping of gas bubbles at the electrodes.  The geometry of the Pt 
electrodes was designed to produce a uniform electrical field through the sample, and to 
permit gas to escape easily. The electrodes were wound of 1 mm thick Pt wires. Eddy 
current effects were therefore negligible. A Pt100 thermo resist was embedded in the 
sample to measure the sample temperature in situ. A schematic cross section of the 
experimental setup is shown in Fig. 2 (b). Adjustment of the position of both electrode 
ends and the diameters of different parts of the U-shape passage with respect to the active 
volume of the RF coil were thoroughly tested to minimize gas production and to 
eliminate signals from the bulk solution.  
        Electroosmotic flow was measured for voltages in the range 300…900V. The 

VitraPor samples were 
saturated with 1mM NaCl 
aqueous solutions. The 
conductivity of the bulk 
solution was determined with 
a HANNA Instruments HI 
8633 conductivity meter as 
1.22-1.25×10-4 Sm-1 at room 
temperature. The path length  
between the two electrodes 
was approximately 9 cm. The 
sample temperature was 
carefully controlled to be 
constant within 22.1…22.3oC 
so that Joule heating did not 
affect the results. 

(a)                                            (b) 
Fig. 2 Schematic figures of the experimental 
setups for (a) PIF and (b) EOF. The inset of (b) 
shows the geometry of the electrodes.

 All experiments were performed with a Bruker DSX 400 NMR spectrometer 
equipped with a vertical 9.4 T magnet. The room temperature bore is 89 mm. A 
commercial Bruker gradient system with a maximum gradient strength of 1.0 T/m was 
employed. The PGSE-NMR technique was applied with a velocity-compensated pulse 
sequence to measure the effective dispersion coefficient as a function of the effective 
dispersion time. 

2.2 Pulsed gradient NMR measuring technique with compensation of coherent velocity 
effects 
 The instantaneous velocity field v  can be analyzed in two terms according to [3] 

  ,       (1) ( ) ( )v t u t V= +
where ><≡

∞→
vV

t
lim  is the average velocity, and )(tu  is the fluctuation of the Lagrangian 

velocity. The principle of the NMR echo attenuation pulse sequences employed in this 
study is to compensate the phase shift produced by V  and to examine the echo 
attenuation due to [6], [9]. Since all position and velocity symbols to be used in this 
context refer to components along the gradient direction, we will omit the vector symbols 
in the following for simplicity.  

)(tu
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 The trajectory of a nucleus may be expressed as 
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where γ is the gyromagnetic ratio. The phase shifts by the position dependent term φ0(T) 
and the coherent-velocity dependent termφ1(T) can be compensated by using a bipolar 
gradient pulse of the form [6]:   
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That is, φ0(T)=0 as well asφ1(T)=0 after this bipolar gradient pulse. Merely the 

fluctuation term  still contributes. ⎥
⎦

⎤
⎢
⎣

⎡
+−= ∫ ∫

T TT

dttudttudttuG
0

4

3

3

2 )()()()4(
ττ

γτφ

  Practically, a combination of 180° radio frequency (RF) pulses and unipolar gradient 
pulses can be used instead of a bipolar scheme. For technical reasons, the 180° pulses can 
be further split into two 90° pulses each, and the gradient pulses can be composed of 
identical pulses of unit length δ. It ensures that the gradient amplifier produces pulses of 
well defined “area” Gδ. Fig. 3 (a) shows such a pulse sequence. Note that a combination 
of two 90° RF pulses effectively inverts the effect of the gradient pulses with respect to 
the sign. The spoiling gradient pulse spoils all spin coherences in the interval Δ. The use 
of 90° pulse pairs instead of 180° pulses reduces the echo amplitude by a factor of 1/4 on 
the one hand, but avoids excessive transverse relaxation losses on the other. The 
dispersion time effective for this pulse sequence is given by the combined interval 2Δ. 

With tortuous flow through a porous medium, the question whether the velocity of a 
particle is constant depends on the length of the displacement sensitive interval. In the 
limit of small measuring intervals, that is, for root mean-squared displacements shorter 
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than the elementary length scale a, aZ <2 , flow is not hindered and velocities tend to 

be constant so that the incoherent displacement contribution can only arise from 
Brownian diffusion.  

Intervals permitting displacements in the range ξ<< 2Za  are connected with 

more or less random velocity changes so that the compensation for flow becomes 
incomplete. In this case, random phase shifts by tortuous flow lead to the attenuation of 
the echo amplitude indicating incoherent displacements. The influence of such motions 
will be the larger the longer the sensitive interval is, that is, the more randomly the 
particle trajectories develop. 

Finally, for displacements ξ>2Z  in the sensitive interval, we have a superposition 

of a constant drift velocity and randomized displacements due to the tortuosity of the 
percolation cluster. In coherent-velocity compensation experiments, the drift contribution 
can completely be eliminated so that attenuation by incoherent tortuous flow governs the 
echo amplitude. 

2.3 Electrical field pulses 
applied during measurements 
of EOF 
 During each measurement 
of EOF, a pair of voltage 
pulses generated by a KEPCO 
BOP 200-1M power supply 
and controlled by a home built 
electronic device was applied 
to the Pt electrodes. An 
electrical field pulse pair as 
shown in Fig. 3 (b) was 
produced over the samples. 
The first pulse must be turned 
on with a long enough time 
delay t* to achieve steady-state 
conditions before the 
corresponding phase-encoding 

NMR pulse sequences starts. Experimentally, for all kinds of samples used t* was varied 
from 50 ms to 150 ms. Each decay curve measured at t*=50ms and t*>>50ms with the 
other parameters kept constant agreed quite well, which indicated that EOF was fully 
established at the beginning of the RF pulse sequence after 50 ms. Typical echo decay 
curves measured at t*=50 ms and t*=150 ms for a VitraPor #1 sample with the largest 
pore size (nominally 100…160 μm) at effective dispersion times of 220 ms and voltages 
of 300V and 900V are compared in Fig. 4. 

(a) 

(b) 
Fig. 3 (a) Coherent velocity compensated RF and 
field gradient pulse sequences practically used for 
NMR experiments probing both PIF and EOF. (b) 
Electrical field pulses applied to the samples during 
measurements for EOF. 

 Uni-polar electric field pulses caused excessive gas production and chemical reactions 
on the surfaces of electrodes which may lead to artefacts in the measurements: (1) 
asymmetric anode and cathode reactions may cause a displacement of the whole water 
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column in the U-shaped sample tube and change the concentration of the solution; and (2) 
with uni-directional flow, gas produced on the anode can have much more chances to get 
inside the samples instead of escaping from the upper part of the U-shaped tube. 
Therefore a second electrical field pulse of identical length but opposite polarity was  
applied in each measurement cycle. 
 Time intervals between the two pulses in each cycle and between the cycles were set 
to be long enough for dissipating the Joule heating effect. In this way, the sample 
temperature measured in situ was kept constant. Also, long enough intervals permitted  
any gas bubbles to escape.  

Fig. 4 Typical echo decay curves measured at t*=50 ms and t*=150 ms for a VitraPor 
#1 sample at voltages of (a) 300V and (b) 900V.

(a)                                                                    (b) 
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3. Results 

In the limit aZ <2  , the dispersion coefficient approaches the ordinary Brownian 

diffusion coefficient, 
  .      (6) constDD Browndisp =≈
  For ξ>>2Z , the dispersion coefficient is again stationary and adopts a value,  

Browndisp DconstD >>≈ .      (7) 

However, in the scaling window ξ<< 2Za  , a time dependent diffusion 

coefficient is expected for flow through random media at large Péclet numbers, Pe>> 1 ,  
   with 0 < f < 1 and .  (8) f

dispdisp ttDD ∝= )( effdispBrown DtDD << )(
The spin echo attenuation curves measured in fluids in porous media tend to be non-

exponential. For an evaluation, one therefore uses the proportionality for the low-wave-
number limit, 
  ,     (9) )exp(),( 2

0 tDqtqE effq −∝→
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typical for diffusive echo attenuation experiments under ordinary conditions as an 
approach [10]. The wave-number is defined by q = γδG for a gradient pulse width δ. The 
coefficient determined in this way will be called “effective dispersion coefficient”, Deff , 
and tends to be a function of the dispersion time, t=2Δ. Furthermore anticipating that the 
displacement propagator can be approached by a Gaussian function, the mean-squared 
displacement along the gradient direction can be determined according to 
  ttDZ eff )(22 ≈ .       (10) 

3.1 Hydrodynamic dispersion in PIF 
For pressure-induced flow, the actual flow rates were controlled by a pump. Figure 5 

(a) and (c) shows typical plots of <Z2> obtained for VitraPor #1 and VitraPor #C samples 
at different flow rates as a function of the dispersion time 2Δ [11]. A power law of the 
form  
  α)2(2 Δ∝Z        (11) 

can be stated in the frame of the experimental accuracy for low and high flow rates. This 
applies in particular to the flow rates 0, 0.7- 0.9 ml/min. Obviously, a crossover between 
the subdiffusive limit in the absence of flow to a superdiffusive limit in the presence of 
strong enough flow occurs. The fitted exponents are α≈0.84 and α≈1.95, respectively, for 
the time window probed in the experiments. 

The root mean-squared displacements evaluated from the experiments ranges from 10 
to 200 μm. This is the length scale of the pore space topology of the examined porous 
glass. That is, the transport properties refer to the scaling window where a power law 
behavior can be expected. In the absence of flow, transport is governed by molecular 
diffusion obstructed by the confining geometry. The consequence is a subdiffusive mean-
squared displacement law. Above a flow rate of about 0.7 ml/min, the exponent α≈1.95 
indicates a super-diffusive law even approaching the “ballistic” case α=2. In this limit, 
particles are displaced in all directions with the same mean velocity. For hydrodynamic 
dispersion in disordered porous media, this is the case when pure mechanical mixing 
under the influence of the local geometry is relevant as demonstrated with computer 
simulations by Duplay and Sen [12]. 

The dependence of Deff on the Péclet number (Pe) is also of interest. It reflects the 
nature of the mixing process. At Péclet numbers in the range of 5<Pe<300, a law of the 
form  
  

0 ( ) LL
L

m

D c c Pe
D

β= +        (12) 

is expected [4], where  and  are numerical constants. The empirical value of the 
exponent is 

0c Lc
1.2Lβ ≈ . In this regime, dispersion is dominated by convection, but the effect 

of molecular diffusion is not entirely negligible.  
The mean flow velocity in a porous medium is given by 

  
φη

= rfV
A

 ,       (13) 
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where fr is the flow rate, A the area of the cross section of the sample, Φ the porosity, and 
η the tortuosity. η is defined as D1s/Dm, where D1s is the effective dispersion coefficient in 
the saturated porous medium for 2Δ= 1s in the absence of flow, and Dm is the molecular 
diffusivity of bulk water. As usual, the Péclet number is defined as the ratio of a coherent 
and an incoherent transport quantity, 
  

m

VPe
D
ξ

= .       (14) 

The correlation length ξ is assumed to be three times the pore size. The mean velocity, V, 
ranges from 9.75×10-5 ms-1 to 1.2×10-3 ms-1. The Péclet number varies accordingly from 
8 to 140. 

Figures 5 (b) and (d) show plots of the ratio  
eff mD D  versus Pe determined according 

to Eq. (14) with the dispersion time as a parameter [11]. For comparison, the power law 

(a)                                                                            (b) 
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given in Eq. (12) is also plotted for an exponent βL=1.2. The data in Fig. 5 (d) can be 
approximated by this law, but a more complicated relationship is suggested by the plot in 
Fig. 5(b). 

3.2 Hydrodynamic dispersion in EOF 
 For electroosmotic flow, assuming a Boltzmann charge density distribution of the 
ions near the matrix surface and employing the Debye-Hückel approximation, the 
average velocity of EOF in a slit and/or a cylindrical microchannel is expected to be a 
linear function of the applied electrical field strength Eext and the zeta potential ζ [7] 

  ζ
η
εε

extav Ev 0∝       (15) 

ε and ε0 are the dielectric constants in the medium and in the vacuum, respectively. η is 
the dynamic viscosity of the fluid. In our experiments, the voltage applied to the 
electrodes across the sample varied from 300 to 900V while the path length in the 
electrolyte solution from electrode to electrode was about 9 cm. Consequently the higher 
the voltage applied, the stronger the produced flow could be expected. 
 Fig. 6 (a), (c), and (e) show the effective dispersion coefficient Deff measured as a 
function of the dispersion time 2Δ at different voltages for VitraPor #5, #4, and #1 
samples while Fig. 6 (b), (d), and (f) display the corresponding mean-squared 
displacement <Z2> derived by Eq. (10 ). For VitraPor #5 with a pore size of 1-1.6μm, 
Deff first decreased sharply and then increased slightly with 2Δ in the presence of EOF 
[see Fig. 6 (a)]. Likewise, Deff first decreased and then sharply increased with 2Δ in 
VitraPor #1 with a pore size of 100-160 μm under EOF [Fig. 6 (e)]. In both cases, a 
minimum value of Deff could be clearly defined at a certain characteristic dispersion time 
between 130…170ms. Beyond this characteristic dispersion time a crossover from 
subdiffusive to normal or superdiffusive displacement power law behavior was identified 
in Fig. 6 (b) and (f) for VitraPor #5 and VitraPor #1, respectively. The dependence of Deff 
and <Z2> on 2Δ [see Fig. 6 (c) and (d)] in VitraPor #4 with a medium pore size of 10-16 
μm lies between the behavior observed with VitraPor #5 and #1. 
 For all three kinds of samples, the dispersion coefficient was enhanced as the external 
electrical field was increased. This can certainly be taken as an obvious indication of 
electroosmotic flow. Hydrodynamic dispersion became more effective when the pore size 
was larger. For VitraPor #1, at dispersion times longer than the characteristic value of 
130 ms, the exponent α obtained by fitting Eq. (11) to the data increased from about 0.88 
in the absence of electrical field to about 1.85 for the highest electrical field applied. At 
shorter effective dispersion times, only a subdiffusive displacement law fitted to the 
experimental data. 
 The existence of a minimum value for Deff may indicate the competitive action of pore 
space restrictions at short times (Deff decreases) and mechanical dispersion at long times 
(Deff increases). In the inset of Fig. 6 (e), a plot of Deff vs. 2Δ for a VitraPor #1 sample 
under pressure-induced flow is shown for comparison. A slight tendency to reach a 
minimum value of Deff could also be found in the same range of dispersion time at a flow 
rate smaller than 0.3 ml/min. 
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Fig. 6 Hydrodynamic dispersion for EOF. (a), (c), and (e) The effective dispersion 
coefficient, Deff, measured as a function of the effective dispersion time, 2Δ, at different 
flow rates in VitraPor #5, VitraPor #4, and VitraPor #1, respectively. The inset of (e) a 
plot of Deff vs. 2Δ for a VitraPor #1 sample under pressure-induced flow. (b), (d), and (f) 
Mean-squared displacement, <Z2>, as a function of 2Δ, at different flow rates in VitraPor 
#5, VitraPor #4, and VitraPor #1, respectively. The solid straight line represents 
<Z2>=2D0,bt, where D0,b stands for the diffusion coefficient in the bulk solution at zero 
voltage. The thin lines between data points serve as a guide for the eye.  

0.1
1.0x10-9

2.0x10-9

3.0x10-9

4.0x10-9

5.0x10-9

6.0x10-9

0.1

2.0x10-9

4.0x10-9

6.0x10-9

 

 

 0V
 300V
 500V
 700V
 900V

D
ef

f /
m

2 s-1

2Δ /s

VitraPor #1 100-160μm

2Δ /s

D
ef

f /
m

2 s-1

flow rate in ml/min
 0.0
 0.1
 0.2
 0.3

 

 

 

 

PIF

10



 

  

4. Discussion and conclusions 
 Molecular diffusion and hydrodynamic dispersion were studied by a PFG-NMR 
technique in disordered porous glasses for pressure-induced and electroosmotic flows. In 
both cases subdiffusive behavior were found in the absence of flow while superdiffusive 
mean-squared displacement laws were evaluated at high flow rates/high electrical fields 
in the scaling window. The crossover from sub- to superdiffusive behavior as increasing 
the flow rates indicated the competition between molecular diffusion and convection. 
  In EOF, a minimum value of Deff at a characteristic dispersion time can be clearly 
identified in comparison with PIF. The velocity distribution in the flow field for EOF and 
PIF is expected to be different. In the case of a two-dimensional tube with smooth 
surfaces, the velocity distribution with PIF should take a parabolic shape while with EOF 
a plug-like distribution is relevant as schematically illustrated in Fig. 7 (a) and (b). The 
existence of a characteristic dispersion time indicates a characteristic length scale in the 
pore size structure. Hydrodynamic dispersion overcomes pore space restrictions only 
when molecules can experience a root mean-squared displacement exceeding the 
characteristic length scale and this becomes visible in the EOF case due to the uniform 
velocity distribution. 

(a)                                                                         (b) 
Fig. 7 Schematic flow velocity distributions for EOF and PIF in a two-dimensional 
tube with smooth surfaces 
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