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Abstract 
The extracellular space (ECS) of the brain is a thin region surrounding each cell that 

is filled with a medium resembling cerebrospinal fluid and an unknown amount of 
extracellular matrix.  The ECS is difficult to study but diffusion measurements based on a 
point-source diffusion paradigm have begun to reveal the complex structure of this 
region.  Despite the complexity, a modified version of Fick’s classical diffusion equation 
incorporating parameters for volume fraction and tortuosity has been shown to be valid. 
Using real-time iontophoresis and the small molecule tetramethylammonium, the volume 
fraction of typical brain tissue has been determined to be 0.2, i.e. 20% of the brain is ECS 
and the typical tortuosity is 1.6, which means that a small molecule has an effective 
diffusion coefficient that is 2.6 less than in free solution.  Monte Carlo modeling, 
however, shows that a simple ensemble of convex cells, each surrounded by a uniform 
ECS cannot generate a tortuosity greater than 1.225.  Further modeling suggests that the 
discrepancy between experiments and theory may be accounted for by the existence of 
dead-space microdomains in the ECS; a viscous extracellular matrix might also play a 
role.  Diffusion measurements with integrative optical imaging of fluorescent 
macromolecules and quantum dots show that tortuosity is increased with macromolecular 
size and analysis based on the theory of restricted diffusion in pores suggests that the 
width of the ECS is in the range 38-64 nm. 

 Key words: Brain tissue, extracellular space, volume fraction, tortuosity, dead-space 
microdomain, extracellular matrix, tetramethylammonium, dextran, quantum dot 

1. Introduction 
The brain enables us to analyze complex scenes and sounds in a fraction of second 

and is responsible for the performance of exquisite movements orchestrated by a vast 
array of coordinated muscles.  Beyond that, the brain is the source of speech, reasoning, 
memory and consciousness, but ideas about how this organ works remain very 
rudimentary.  Yet the brain is no more and no less than a vast assemblage of 
communicating cells.  These cells have a complex geometry and are closely packed but 
they maintain a small space between them, the extracellular space (ECS).  This space is 
vital to brain function and it is equally important as a conduit for the delivery of 
therapeutic drugs.  Unfortunately the ECS is hard to study.  By analyzing the diffusion of 
molecules in the ECS [1, 2] it is possible to build up a picture of the ECS and models are 
emerging.  These models describe different aspects of the experimental data and the 
challenge for the future is to arrive at a comprehensive description. 
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2. Extracellular space 
The ECS has been likened to 

the “water phase of a foam” [3] 
with the foam representing the 
cells.  This is a useful but simplistic 
image.  The cells of the brain are 
actually divided into two types, 
neurons that communicate by 
means of electrical and chemical 
signals and glial cells that are 
equally numerous but whose 
overall function remains unclear.  
Both these types of cell have 
rounded bodies containing a 
nucleus but they also have long and 
often branched extensions that are 
cylindrical in cross-section for 
neurons but may be sheet-like for 
glia.  The net effect is a complex 
‘neuropil’ (Fig. 1) containing 
profiles that range in size from less 
than a micrometer to tens of 
micrometers.  Despite the complexity, the ECS has many of the characteristics of a 
porous medium and relevant theories from other disciplines can be employed. 

 
Fig. 1.  Electron micrograph of a small 

region of the cerebral cortex of a rat.  The black 
areas between cells indicate the ECS, which 
probably has been reduced in width during 
histological processing.  Scale bar represents 
about 1 μm.  Reproduced from [1]. 

In Fig. 1 the ECS has been filled in (black lines) and it is evident that every cell 
membrane is surrounded by a thin ‘atmosphere’ of ECS.  This atmosphere contains a 
fluid that is similar in composition to the cerebrospinal fluid that baths the outer surface 
of the brain and is present in large internal cavities or ventricles and in the spinal canal.  
This fluid is predominantly composed of sodium and chloride dissolved in water with 
much smaller amounts of other substances, including potassium and calcium.  There is 
another entity in the ECS and that is the extracellular matrix.  This matrix is composed of 
long-chain molecules that have many negative charges.  Among the main components are 
hyaluronan and chondroitin sulfate [4].  One problem is that it is not known how much 
matrix is present in the ECS and it probably varies with different brain region.  If there is 
a lot of matrix then it will increase the viscosity experienced by a diffusing molecule. 

3. Diffusion concepts applied to the ECS 
Because the ECS is essentially a fluid-filled space it does not survive well the tissue 

processing that is required to produce an electron micrograph and typically the width of 
the space is reduced.  But beyond that, the dynamic properties of the ECS – how it 
influences molecular transport for example – cannot easily be estimated from 2D fixed 
sections of the brain.  This type of information can be revealed from diffusion 
measurements. 

2



Early work on diffusion in the brain 
used radiotracers, such as sucrose, that 
could be expected to remain largely 
confined to the ECS.  Typically, one surface 
of the brain was bathed in the tracer for 
some time, allowing the substance to 
penetrate and form a concentration gradient.  
Then the tissue was fixed and cut as a 
sequence of small blocks perpendicular to 
the surface, the tracer in each was quantified 
and the diffusion properties of the brain 
region estimated [1, 5]. 

 
Fig. 2.  Point-source paradigm 

for diffusion studies.  Glass source 
micropipette is filled with small 
probe molecules that are released 
into the ECS.  The micropipette tip 
is a good approximation of a point 
source.  Released molecules diffuse 
(lines with arrowheads) through the 
ECS  around cellular elements.  
Some molecules may be removed 
from the ECS at uptake or loss sites 
(black dots). 

More recent diffusion measurements 
have used variations of a ‘point-source 
paradigm’, largely developed in our 
laboratory, to reveal the ‘real-time’ 
diffusion properties of small regions of 
brain tissue (Fig. 2).  The crux of this 
method is to use a glass micropipette with a 
tip diameter of only a few micrometers to 
release a small quantity of a substance into 
the ECS and then monitor the subsequent 
concentration of the substance as a function 
of time and position.  This paper will be 
based primarily on data obtained with such a 
paradigm, but the results are in agreement 
with the radiotracer studies. 

The fundamental hypothesis behind all these measurements is that small substances 
that enter the ECS and remain confined to this domain will move predominantly by 
diffusion.  Because diffusion is a macroscopic expression of an ensemble of microscopic 
random walks, molecules will explore the structure of the ECS and the concentration 
distribution will reveal important parameters of the local structure [2].  The most 
important parameters are volume fraction and tortuosity. 

For an ideal molecule, i.e. one that stays in the ECS, volume fraction (α) is defined as 
 

 TissueECS VV=α  (1) 

where VECS is the volume of the ECS and VTissue is the volume of the entire tissue.  
Both volumes are defined with respect to some Representative Elementary Volume 
(REV), typically for the point-source paradigm of the order of 106 μm3.  If electron 
micrographs were perfect, α could be obtained from stereological measurements on 
images, such as that shown in Fig. 1, by simply comparing surface areas or line segments. 

Tortuosity (λ) is a more complex parameter than volume fraction but it is easy to 
define operationally as 
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 *DD=λ  (2) 

where D is the diffusion coefficient for the ideal molecule measured in a free 
solution, often a very dilute agarose gel (0.3% w/v) made up with a salt solution that 
mimics the major components of the fluid in the ECS, and D* is the effective diffusion 
coefficient measured in the brain (note that in chemical engineering the tortuosity is 
generally equated to D D*  rather than D D* ). 

The governing diffusion equation linking α and λ is then defined as a modification of 
Fick’s second law 

 ( )CFQCD
t
C

Loss
2

2
−+∇=

αλ∂
∂  (3) 

where Q is a source term and FLoss(C) is a term that accounts for any loss of 
molecules from the ECS.  For ideal molecules, loss will be zero.  There are several 
important caveats regarding this equation.  The first is that the concentration measured 
along any line in the tissue is actually discontinuous because the intracellular 
concentration is zero for an ideal molecule so that the rigorous derivation of the diffusion 
equation involves a volume-averaging process over the appropriate REV [1, 6].  This 
process also provides a justification for the tortuosity.  The second caveat is that in Eq. 
(3), and throughout this paper, the concentration C is defined as the actual concentration 
measured in the ECS.  This is the physiologically relevant variable because it is what a 
receptor on a cell membrane experiences and that is also the concentration measured in 
most experiments described here.  However, other disciplines and some experiments use 
concentration per unit volume of tissue, C1.  It is clear that C1 = αC but failure to 
recognize which definition is in use can result in a misinterpretation of the literature.  The 
third caveat is that bulk flow within the ECS has been neglected because it is negligible 
in the experiments that form the basis of this paper.  Bulk flow refers to hydrodynamic 
flow within the ECS, which is probably confined to a narrow perivascular space around 
some blood vessels in normal tissue (see [1] for more detail). 

Because D* < D it follows that λ > 1 and consequently tortuosity may be thought of 
as a measure of the hindrance that the brain places on a diffusing molecule with respect to 
a free medium. As will become apparent, however, the interpretation of λ in terms of 
specific structure is an entirely separate process from its definition given by Eq. (2), so 
tortuosity is not as conceptually simple as volume fraction. 
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4. Measurements with small ‘ideal’ molecules 
The first realization 

of the point-source 
paradigm considered 
here is the real-time 
iontophoresis method 
using tetramethyl-
ammonium, abbreviated 
as the RTI-TMA 
method.  TMA+ is a 
small cation of 74 
molecular weight that 
approximates an ideal 
point molecule that may 
be expected to explore 
the entire ECS.  The 
concentration of TMA+ 
as a function of time t at 
a distance r from the 
point source micropipette can be sensed with an appropriate ion-selective microelectrode 
(ISM).  A typical experimental arrangement is shown in Fig. 3.  The appropriate solution 
to Eq. (3), described in [1, 6], is 

 
Fig. 3.  Recording setup for diffusion measurements 

using real-time iontophoretic (RTI) and integrative optical 
imaging (IOI) methods.  See text for details. 
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 (4) 

Some TMA+ is lost from the ECS, either into cells or across the blood-brain-barrier 
and this is accounted for by setting FLoss(C) = k´C in Eq. (3).  Eq. (4) assumes that the 
source Q, which is a point-source in space, is begun at time t = 0 and continues to 
infinity.  To obtain the solution for a finite pulse of duration tp, a delayed form of Eq. (4) 
must be subtracted from the infinite duration solution 

 pp    ,)()( ttttCtCC >−−= . (5) 

Finally, Q itself is defined in terms of the applied iontophoretic current I and transport 
number of the source electrode nt as Q = Int/zF where z is the valency of the ion (+1 for 
TMA+) and F is Faraday's Electrochemical Equivalent.  For a detailed description of the 
method see [6 – 8]. 

Non-linear curve fitting of Eqs. (4) and (5) to experimental data obtained in a dilute 
agarose gel (where λ = 1, α = 1, k´ = 0) determine D and nt and then similar curve fitting 
in brain tissue provides D* and α.  From D and D* the tortuosity is calculated using Eq. 
(2).  The value of k´ is also obtained in brain tissue but this is really a correction factor for 
the non-ideal behavior of TMA+ and not a fundamental parameter so it will not be 
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considered further here.  The data acquisition and analysis are performed by custom 
software (Wanda and Walter, available from C. Nicholson). 

5. Data and models for small ‘ideal’ molecules 
From more than 30 peer-

reviewed studies with the RTI-
TMA method carried out 
predominantly in our laboratory in 
New York and the laboratory of 
Prof. Eva Syková in Prague it can 
be said that the diffusion equation 
(Eq. 3) is applicable to brain tissue. 
Further, it is established that in 
normal brain tissue α = 0.2, i.e. 
20% of the brain is actually ECS, 
and λ = 1.6, i.e. a small molecule 
has an effective diffusion 
coefficient that is reduced by about 
2.6 compared to that in a free medium.  Of course there are deviations from these values 
in some regions of the brain, for example diffusion is anisotropic in the cerebellar 
molecular layer [9] and in fiber tracts of the brain such as the corpus callosum [10] but on 
the whole the similarities in results are more striking than the differences and the same 
values occur in a range of species. 

 
Fig. 4.  Simple models of ECS. A. 

Ensemble of cubes. B. Ensemble of truncated 
octahedra. 

5.1 Equally-spaced convex cell models 
Can a model account for α = 0.2 and λ = 1.6?  The most elementary model is to 

return to the idea of the ECS as the water phase of a foam but to simplify the problem 
even further by representing the cells by cubes of uniform size and equal spacing (Fig. 
4A).  By choosing an appropriate cube size and spacing, α will be specified and then λ 
can be estimated by running a Monte Carlo simulation. For the simulation, a large 
number of point particles are released from a point source in the middle of an ensemble 
of many cubes and the particle distribution after a certain number of time steps is 
measured. It is assumed that each particle moves within the ECS with a diffusion 
coefficient D while making occasional specular collisions with the walls of the cubes.  
Because cubes are space-filling, the value of α can be varied from 0 to a value 
approaching 1 (free medium without cells) and a range of λ is obtained.  This plan was 
implemented by Tao & Nicholson [11] using the program MCell developed for 
simulating some other neurobiological problems [12].  The simulations suggested that a 
simple relation 

 ( ) 23 αλ −=  (6) 

6



exists between α and λ.  Remarkably, this is the same result that was obtained by 
James Clerk Maxwell in 1891 (See [13]) 
for a dilute suspension of spheres.  Some 
work has indicated that Maxwell’s result 
should hold for more densely packed 
structures [14].  The maximum value of λ 
occurs in Eq. (6) when 0→α  (this is 
possible because a point particle of 
negligible size is being used) and in this 
limit 225.123 =→λ .  This limiting 
value was also derived by other 
investigators using different approaches 
(e.g. [15 – 17]). 

Cubes pack with long aligned 
channels (Fig. 4A) however, so to 
confirm that Eq. (6) and its limiting value 
were not related to this feature, Tao and 
Nicholson [11] used two other space-
filling sets of objects, namely truncated 
octahedra (Fig. 4B) and a combination of 
rhombicuboctahedra, cubes and 
tetrahedra.  The results were exactly the 
same as for cubes and it was hypothesized 
that the result held for any set of space-filling convex cells that had uniform spacing.  A 
more sophisticated Monte Carlo simulation with pseudo-random shapes further 
confirmed this [17]. 

 
Fig. 5.  Dead-space microdomains.  

A. 2D representation of a cubic cell with 
a cavity or ‘pocket’ dead-space. B. 
Cubic cell partially wrapped by a sheet-
like glial cell. The wrapping forms a 
dead-space.  C. Four cubic cells with 
uniform spacing (no dead-space). D. 
Four cubic cells deformed to allow a 
void dead-space to form at center. 

 

5.2 Dead-space microdomain models 
The equally-spaced convex cell results raise an important problem when compared 

with the experimental data showing that usually λ = 1.6 with α = 0.2 because the models 
described by Eq. (6) give λ = 1.183 for α = 0.2 and the maximum value cannot exceed 
1.225.  This prompted an examination of the underlying assumptions of the model.  The 
first assumption was that the cells had to be convex.  As noted in Section 2, the cells of 
the brain have a very complex geometry; in 2D sections the majority of profiles can 
appear convex but may actually be different in 3D.  This leads to the hypothesis that 
concave elements might exist, either as invaginations of a cell membrane (Fig. 5A) or as 
a more extensive enveloping sheet-like configuration (Fig. 5B).  Both these cases amount 
to dead-space microdomains that are not well-connected with the rest of the ECS.  By this 
it is meant that a diffusing particle upon entering such a microdomain explores it for a 
while and then exits at the same location that the particle entered.  Thus the particle does 
not advance towards its goal but merely loses time.  For suitable geometries and diffusion 
processes this is known to increase the effective diffusion coefficient (e.g. [18]). 
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Hrabětová and co-workers [19] have provided experimental evidence for the 
existence of dead-space microdomains in ischemic brain tissue and it is plausible, but not 
completely established, that such dead-spaces might exist in normal tissue.  A model 
based on dwell-times was proposed [19] and more rigorously analyzed by Hrabe et al. 
[17] that yields, for small microdomains and volume fractions in the range encountered in 
brain tissue, the basic formula 

 ( )do αααλλ −=  (7) 

where λo = 1.225 is the limiting volume fraction derived from Eq. (6), αd is the 
volume of the dead-space microdomains and α is the total volume fraction of the ECS.  
The well-connected extracellular space with volume fraction αo, is that remaining after 
elimination of the dead-spaces so α = αo + αd.  Application of Eq. (7) to experimental 
results has revealed that the ratio αd:αo would be expected to be about 40:60 in normal 
cortical tissue and 60:40 in pathological ischemic tissue ([19, 20]). 

These results were generalized to larger microdomains and volume fractions [21], 
based on detailed Monte Carlo simulations, resulting in the expression 
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where β is an empirical parameter in the range 2 – 3.  These simulations also covered 
the case where the dead-space took the form of a local enlargement of the ECS or a local 
void (Fig. 5C, D).  These voids also delay particles because, once they enter such a region 
they take some time to find their way 
out again.  This result is known in 2D 
[22, 23].  The void result deals with 
the second assumption that was made 
in the simple model, namely that the 
spacing between cells remained 
constant.  Introducing local 
enlargements violates this condition 
and increases λ. 

 
Fig. 6.  Tortuosity as a function of α 

for a fixed αd.  For Eq. (7) αd = 0.083; for 
Eq. (8), β = 2, αd = 0.091, and β = 3, αd = 
0.119.  These values ensure that when α = 
0.2, λ = 1.6.  Eq. (6), the case with no 
cavities, is plotted for comparison.  

The two cavity models (Eq. 7 and 
Eq. 8) are plotted in Fig. 6 for fixed 
values of αd along with the cavity-
free Eq. (6).  For Eq. (8), β = 2 
corresponds to a ‘pocket’ (Fig. 5A) 
while β = 3 is appropriate for a void 
(Fig. 5C,D);  see [21] for more detail.  
It is evident that the presence of 
cavities dramatically increases λ as α 
diminishes. 
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It is worth noting that the limiting value of λ for 2D ensembles of squares or other 
convex structures is 414.12 =  [15], which is greater than the value of 1.225 that 
applies to 3D convex cells.  Furthermore, if the ECS is composed of connected tubes 
instead of the planes that underlie Eq. (6), the limiting value of λ is 732.13 =  [15].  
Thus the tortuosity is a subtle measure of connectivity and geometry and this makes it 
difficult to estimate it from simple models because they often fail to take into account all 
the possible pathways, or local delays, inherent in the geometry [17, 23].  Indeed, 
Torquato [24] has argued that the sort of random media under discussion here require an 
infinite set of n-point correlation functions in order to characterize them completely. 

5.3 Extracellular matrix models 
The previous arguments show that the basic geometrical tortuosity associated with an 

ensemble of uniformly spaced convex cells can be increased by introducing a more 
complex geometry and this strategy will be capable of elevating the value of λ to 1.6 or 
more for a volume fraction of 20%.  This is not, however, the only way in which 
tortuosity might be increased; the extracellular matrix could also accomplish this.  If the 
matrix is regarded as a polymer solution then a large literature may be applied to its 
representation [25, 26].  An attempt to model both the geometrical and viscous 
components of tortuosity in brain tissue was made by Rusakov & Kullmann [27].  But 
because so little is known about the extent of the matrix, such elaboration may be 
unwarranted and simpler models suffice that just represent the viscosity of the ECS as 
greater than that of a free solution.  Because λ can always be formally decomposed into a 
set of multiplicative components 
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it is plausible that λ can be expressed as the product of a geometrical tortuosity 
described above and a viscous component i.e. λ = λgeomλvisc.  It has also been suggested 
from physiological experiments that the introduction of 5% 40 kDa dextran into the ECS 
increases ECS viscosity [28] so an intrinsic matrix might have a similar effect. 

6. Measurements with macromolecules 
While TMA+ and some other small ions have been excellent probes of the ECS they 

do not tell us how a much larger molecule would behave.  Many important signaling 
agents in the brain are macromolecules (e.g. nerve growth factors). Furthermore, the 
diffusion of large molecules can reveal new properties of the ECS; the latter perspective 
is emphasized here. 

The RTI method used with TMA+ cannot be applied to macromolecules both because 
it is usually difficult to iontophorese large molecules and because it is not possible to 
fabricate ISMs that can sense macromolecules.  To study macromolecules, Nicholson and 
Tao [29] introduced a variant of the point-source paradigm which they called Integrative 
Optical Imaging (IOI). 

9



In the IOI method (Fig.3), macromolecules carrying a fluorescent label are released 
from a micropipette by a short pressure pulse and the resulting diffusing cloud of 
molecules imaged using a conventional epifluorescent microscope equipped with a digital 
camera connected to a PC [29, 30].  If the pulse is very brief compared to the duration of 
subsequent diffusion processes, then it can be regarded as a delta function in both time 
and space and the appropriate solution (see [1, 29]) to Eq. (3) is: 
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where a volume U, of the macromolecular solution at concentration Cf is ejected.  The 
variable t0 represents a virtual source time origin such that the source appears to have 
been activated at time t0 before it actually occurred.  This allows a point-source 
formalism to be employed even when a finite initial volume is released (see [31]).  
Because large molecules do not easily leave the ECS, no loss term is needed, i.e. FLoss = 0 
in Eq. (3). 

To make use of Eq. (10) it is necessary to relate the image intensity distribution 
recorded by the camera to the concentration.  The theory of how the image of the 
diffusing cloud of molecules maps onto the plane of the camera is complicated [29, 32] 
but it may be shown that Eq. (10) can be reduced to Eq. (11).  In both Eq. (10) and Eq. 
(11) a discrete time ti is used to represent the sequence of camera images: 

 ( ) ( ) (i

r

i i i i i i )I r E e   and  D t t
2( ) 2 *

0, γγ γ γ
−

= = 4 +  (11) 

where Ii is the intensity of the fluorescence and Ei is an amplitude term embodying 
the defocussed point-spread function of the objective [29, 32].  By fitting the exponential 
term in Eq. (11) to the spatial distribution at a sequence of times ti, D* can be determined 
[29].  Control diffusion measurements to determine D are made in dilute agarose and then 
λ is calculated from Eq. (2).  The actual data analysis is carried out using custom 
software (Vida and Ida, available from C. Nicholson and described in more detail in 
[30]). 

7. Data and models for macromolecules 
The diffusion of a variety of globular and flexible chain molecules in brain tissue has 

been reported in several papers.  Here attention will be confined to molecules with a 
globular structure where a meaningful hydrodynamic diameter can be estimated from the 
free diffusion coefficient using the Stokes-Einstein equation [33] 

 13B
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where dH is the molecule diameter (nm), kB is Boltzmann’s constant (1.38065 × 10  
J.K ), T is temperature (K), η is viscosity (Pa.s) in the solvent (usually water) and D is 
the free diffusion coefficient (cm  s ). 
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Two types of globular macromolecules may be considered: dextrans and proteins.  
Dextrans are aggregates of long-chain sugar molecules that form a loose ball in solution 
and only have an approximate molecular weight.  In contrast, proteins are rigid molecules 
with a well defined structure, parts of which may make specific interactions with 
receptors on cells or components of the extracellular matrix.  For the protein studies 
referenced here, such specific interactions are either non-existent or have been 
suppressed, so both types of molecule probe the more general properties of the ECS. 

Using dextrans ranging from 3 kDa to 70 kDa and proteins ranging from 6.6 kDa to 
66 kDa in slices of rat brain it is a general finding that the measured tortuosity is no 
longer 1.6 but ranges from about 1.7 – 2.5 and there is a steady increase in λ with 
molecular weight (Fig. 7).  Thus larger molecules are more hindered, probably through 
increasing interaction with the membranes that define the ECS. 

7.1 Models to estimate the width of the ECS 
The increase in tortuosity with molecular size prompts the question of what is the 

largest molecule that can diffuse through the ECS.  In principle one could answer this by 
selecting a range of molecules of ever increasing size until one was reached that no 
longer diffused.  In practice, however, this is not possible because the time needed to 
determine the effective diffusion coefficient in the tissue would eventually exceed the 
viable lifetime of the 
biological preparation, as the 
chosen molecules diffused ever 
more slowly.  To make 
practical measurements, 
Thorne and Nicholson [38] 
turned to the theory of 
restricted diffusion (RD) in 
narrow pores and probed the 
diffusion properties of the 
anesthetized in vivo rat cortex 
with a recently developed 
nano-particle, the quantum dot. 

Quantum dots (QDs) are 
nanocrystals that have a core 
which emits fluorescent light 
at a precise frequency.  The 
core is enclosed in a protective 
shell and, for use in the 
diffusion studies, the shell must be coated with short strands of polyethylene glycol 
(PEG) to make the QD water soluble and inert.  A QD with a final diameter of 35 nm 
(QD655, manufactured by Invitrogen, Carlsbad, California, USA) was chosen and 
diffusion measurements were made with the IOI technique along with measurements of 3 
and 70 kDa dextrans.  The QD did diffuse but with λ = 10.6, a value of unprecedented 
magnitude. 

 
Fig. 7.  Tortuosity versus molecular weight for 
macromolecules in rat brain slices.  Filled circles 
are dextrans and open circles are proteins.  Data 
based on [29, 31, 34 –37]. 
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To interpret these results in terms of the width of a channel required to allow a QD to 
diffuse, a similar decomposition of the tortuosity to that described for the matrix (Eq. 9) 
may be used 
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where  is the interstitial diffusion coefficient.  For neutral, inert substances subject 
to purely steric interactions with pore walls, 

D′
DD′  only depends on channel geometry 

and θ, the ratio of probe hydrodynamic diameter, dH (Eq. 12) to brain ECS width, dECS, 
i.e. ECSH dd=θ .  The parameter 0=θλ  is the tortuosity for a vanishingly small molecule. 

Broadly speaking there are two types of RD model 
that might apply to the ECS, a plane model or a cylinder 
model (Fig. 8).  The previous discussion makes it 
plausible that the ECS is a set of intersecting planes and 
therefore the theory developed by Deen, [39] would be 
appropriate.  However the actual space in which a large 
molecule moves might be reduced to a set of 
interconnected tubes or cylinders because of the presence 
of the matrix.  To a macromolecule the ECS might appear 
as a set of connected tunnels through the matrix, then the 
theory of Bungay & Brenner, [40] would be appropriate.  
In either case, appropriate expressions for DD′ can be 
inserted into equation (13) resulting in two free parameters, dECS and 0=θλ .  Taking the 
example of parallel plane geometry [39]: 

 
Fig. 8.  Pore models.  A. 
Molecule (filled circle, 
diameter dH) in planar 
pore (diameter dECS).  B. 
Molecule in cylindrical 
pore. 

 ( )( )[ ] 21543 169.00.21418.0004.111
−

−++−−=
′

θθθθθ
D
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Non-linear least squares fitting of Eq. (13), substituted with Eq. (14) to the results 
(Fig. 9), as well as fitting the more complicated expression for a cylindrical pore [40] led 
to estimates for dECS and 0=θλ  [38].  RD theory fit the tissue data well for both models 
yielding dECS = 37.7 nm and 0=θλ  = 1.72 for parallel planes and dECS = 63.8 nm and 0=θλ  
= 1.63 for cylindrical pore geometry [38].  At this time there is insufficient data to choose 
between the two models so it can only be said that these results suggest that the width of 
the ECS is between 38 and 64 nm. 

These results challenge the long-held view that the width of the ECS is about 20 nm.  
The 20 nm estimate was based on electron micrographs, however it is well established 
that conventional electron microscopy tends to obliterate the ECS (see [38] for a 
summary of the literature) so the new estimate is not implausible.  This finding has 
importance not only for understanding  how large an effective signaling molecule can be 
in the ECS, but also for the design of drug delivery strategies that may employ 
antibodies, viral vectors or other large vehicles. 
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7. Other modeling issues: binding, uptake and charge 
This brief review has focused on physical impediments to diffusion in the ECS but 

there are other mechanisms that may determine the ability of a molecule to reach a given 
destination.  Chief among these are the possibilities that a specific molecule may bind to 
a receptor on a cell membrane or be taken up into a cell.  Indeed, all molecular signals 
must eventually undergo this fate in order to be effective. 

This mechanism was 
represented by the general term 
FLoss in Eq. (3).  When the binding 
or uptake is irreversible and 
proportional to the concentration, 
an analytical solution to Eq. (3) 
often may be found.  This is 
exemplified by the solution for the 
RTI-TMA method described by Eq. 
(4).  This type of kinetics is also 
appropriate for molecules that are 
lost into the blood stream across the 
blood-brain barrier [41].  In many 
instances of biological interest, 
however, the binding or uptake 
process saturates leading to 
Michaelis-Menten kinetics and 
non-linear solutions to the diffusion 
equation.  An example of this is the 
behavior of the neuromodulator 
dopamine in certain brain regions [42].  Thus in some situations the transport process 
may be dominated by binding, uptake or loss rather than diffusion. 

 
Fig. 9. Fitting of pore models to data.  Data 

points are for measurements in in vivo rat 
cortex with 3 kDa and 70 kDa dextran 
molecules and with QD655 [38]. Plane model 
corresponds to model A in Fig. 8, cylinder 
model to B in Fig. 8. 

Finally, if the binding is reversible and the process is brief compared to the general 
diffusion process, the effect is simply an increased tortuosity [43]; this is essentially the 
case with small dead-space microdomains and the reason why it is legitimate to employ 
the diffusion equation for such problems.  Some form of fast reversible binding also may 
underlie non-specific interactions of charged molecules with the fixed negative charge 
groups on the extracellular matrix; but this interaction is poorly understood at present. 

8. Conclusion 
Diffusion measurements in living brain tissue have revealed that the ECS is a more 

complex microenvironment than hitherto thought.  The geometry may harbor dead-space 
microdomains, a matrix within the ECS may impede molecular movement and the 
transport of large molecules may be dominated by the drag of the cellular membranes that 
form the boundary of the ECS.  For some molecules, other effects such as binding, loss or 
charge interaction may play a major role.  So the ECS has the potential to channel 
molecular signals or be permissive to some but restrictive to others and this behavior may 
vary from brain region to region.  In order to understand these effects and their 
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implications, models are essential and a few have been described here.  Other models 
have been published (e.g. [17, 27, 44, 45]) and modeling the ECS seems a fertile area for 
physicists and engineers in the future.  All modeling, however, needs to be done in 
concert with careful experiments because Nature never ceases to surprise us! 
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