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NMR diffusion measurements continue to grow in application and importance [1-3] including providing 
much of the diagnostic power of MRI. Translational diffusion is intimately related to molecular size and 
consequently provides a direct link to chemical reactions. Moreover, it is generally through diffusion 
that reactants come together and how reaction products disperse. Consequently, NMR diffusion 
measurements are a powerful technique for studying reacting systems since it affords simultaneous 
measurement of the diffusion of each species and the kinetics of the reaction thereby providing deep 
insight into the reaction process. Indeed, it long been questioned as to whether energy released during a 
reaction propels the species in solution (Figure 1) [4, 5]. Recently NMR diffusion measurements have 
been applied to numerous reacting systems including the copper-catalyzed azide−alkyne cycloaddition 
(CuAAC) “click” reaction [4, 6] and polymerisation such as PET-RAFT polymerization [7]. 

 
Fig. 1. Are species propelled by the energy released during a reaction? 

Even in time-stationary systems it can be difficult to perform very accurate diffusion measurements, but 
the problems are exacerbated in reacting systems. Indeed, the measurement procedure is far from 
straightforward when the timescale of the reaction is of the order of the NMR diffusion measurement 
time [8, 9]. There can be a number of challenges including (i) if the populations of the species change 
during the measurement then this must be separated from the diffusive attenuation in the measurement, 
(ii) convection can result if the reaction causes temperature changes and convection can be confused 
with increased diffusion (e.g., [10, 11]), (iii) reaction products may alter NMR relaxation behaviour 
which will also influence the measured signal intensities. To avoid misinterpretation of the NMR 
diffusion data, great care must be taken to avoid the presence of experimental artifacts [4-6, 12-14]. 
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