diffusion-fundamentals.org

The Open-Access Journal for the Basic Principles of Diffusion Theory, Experiment and Application

Li⁺ Ion Diffusion in Solid State Electrolyte Li₃InCl₆ measured by ⁷Li Liquid State NMR

<u>Sarah E. Mailhiot</u>¹*, Palanivel Molaiyan¹, Anu M. Kantola¹, Tao Hu¹, Ulla Lassi¹, Ville-Veikko Telkki¹

¹University of Oulu, Oulu, Finland *sarah.mailhiot@oulu.fi

Conventional lithium-ion batteries have changed modern life. However, concerns remain about their energy density limit and safety risks introduced by flammable liquid electrolytes. One alternative is all-solid-state Li batteries (ASSBs) which are not only safer but also can achieve higher energy densities. One of the most vital components of ASSBs is the solid-state electrolyte (SSEs). The optimization and design of SSEs is still underway, of which ion conductivity, Li⁺ diffusion mechanisms, and their stability are key. For the study of ion conduction mechanisms and Li⁺ diffusion, pulsed gradient spin echo (PGSE) NMR methods are ideal. The PGSE method provides diffusion time dependent ⁷Li apparent diffusion coefficients (*D*) and distances on the scale of 0.2-10 μ m. In the short diffusion time limit, the electrical conductivity is directly proportional to *D* via the Nernst-Einstein equation,

$$\sigma = \frac{DNe^2}{kT},\tag{1}$$

in which σ is the electrical conductivity, N is the number of carrier ions, e is the elementary charge, k is the Boltzmann constant, and T is the temperature. In the long diffusion time limit, D scales with tortuosity and restricted motion, such as the effect of grain boundaries, and the mean squared displacement can be calculated as

$$\langle z^2 \rangle = 6D\Delta$$
 (2)

in which Δ is the diffusion time. In this study, the Li⁺ diffusion mechanisms in Li₃InCl₆ are studied as a function of treatment condition. Li₃InCl₆ is a halide-based SSEs with a stable monoclinic crystal structure and good ionic conductivity. It is known that the ionic conductivity increases after annealing; however, the mechanism by which conductivity increases is unknown. The results indicate that the SSEs is stable when exposed to air and that the Li⁺ D is enhanced by annealing while the presence of intraparticle restrictions increase. The Li₃InCl₆ samples are also characterized by $D-T_2$, T_2 , T_2-T_2 , and T_1 measurements as well as FESEM, TEM/STEM and XRD.

Figure 1: a) *D* is plotted as a function of diffusion time (Δ). b) The mean squared displacement, $\langle z^2 \rangle$ is plotted as a function of Δ . When Δ is short (Δ = 10 ms), *D* reflects conductivity. In comparison to the control sample, ⁷Li $D(\Delta = 10)$ ms increases after annealing and shows no change when the sample is exposed to air. When Δ is long, ($\Delta = 150$ ms), *D* reflects long range mobility and tortuosity. In comparison to the control sample, ⁷Li $D(\Delta = 150$ ms) decreases after annealing and shows no change when the sample is exposed to air.

diffusion-fundamentals.org, Vol. 35 (2022) 43, URL: https://diffusion-fundamentals.org/journal/35/2022/43.pdf

(CC) B'

This work is licensed under a Creative Commons Attribution 4.0 International License