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Typical planar ceramic membrane obtained by sequential tape casting with a gas selective layer on top. 

a) A metal-organic 

framework (MOF) type 

ZIF-8 layer on an asym-

metric graded titania 

support [4], b) Principle 

of a supported mem-

brane: The µm-thick 

separation layer is de-

posited on a 

macroporous ceramic or metallic support. To reduce the pressure drop across the support, i.e. to mini-

mize the flow resistance, usually asymmetric (graded) supports with hierarchical cross section are used. 

As a rough estimate, mass transport through a membrane can be described using 1st Fickian Law. The 

flux density of component A through the membrane is described by   𝑗𝐴 = −𝐷𝑇𝐴  
𝜕𝑐

𝜕𝑥
with jA as the flux 

density in mol of A per time and area. DTA is the transport diffusivity of A, and ∂c/∂x is the concentration 

gradient of component A across the membrane. Exact knowledge of the transport diffusivity is thus an 

important prerequisite for a knowledge-based optimization of separation devices [5]. A discussion of 

the challenges and traps of such measurement is the focus of the Conference Workshop on “Diffusion 

in Nanoporous Materials” and part of an IUPAC initiative (https://iupac.org/project/2015-002-2-100).  

Adsorbents for rapid cycle pressure swing adsorption (psa) processes must allow a quick fluid 

flow of the feed into the nanopores of a zeolite or coal, where a 

diffusion-limited adsorption into the micropore system takes place. 

The shaped zeolite or carbon powders should show transport path 

like a human lung. For a short cycle time, however, the pressure 

drop in a packed adsorbent bed becomes a problem. The choice of 

an appropriate model accounting for intra-particle diffusional limi-

tations is essential to simulate accurately the pressurization and 

blowdown steps of a psa processes [6]. 
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Nanoporous materials like zeolites are widely used for industrial gas separation through pressure swing 

adsorption (psa), new disruptive materials like metal-organic frameworks (MOFs) and covalent organic 

frameworks (COFs) are under evaluation. First LTA zeolite membranes are used in about 500 plants 

worldwide for the de-watering of solvents, especially bio-ethanol. MOF membranes are tested for their 

unique ability to separate short chain olefin/paraffin mixtures. 

Industrial adsorbents and membranes usually show a hierarchical transport-optimized structure. Such 

hierarchical structure as shown in the figure allows an effective interplay of nanopore diffusion [1] in 

the separation layer with fluid flow through the macroporous support [2] to minimize the overall 

transport resistance [3].  
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