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Abstract  

We explore a specific small geometry containing a single thin bounded grain on a substrate with a hole at 
its center. By employing a mathematical model based on surface diffusion, no flux boundary 
conditions, and prescribed contact angles, we study the evolution of the hole as well as the  exterior 
surface of the grain, based on energetic considerations and dynamic simulations. Our results   
regarding the formation and evolution of holes in thin films in small geometries shed light on  various 
nonlinear phenomena associated with wetting and dewetting. 

 
 Keywords: surface diffusion, thin film stability, wetting and dewetting, hole and hillock 
formation. 

 
1. Introduction 

The stability of thin films is critical in innumerable industrial applications [1, 7], and accordingly  
it has attracted considerable attention in terms of basic research as well [3, 10, 11, 12, 13]. Thin film 
stability is associated with wetting, dewetting, and hole formation, as well as with numerous more specific 
experimentally observed phenomena, such as blister formation and rupture, void formation, ligament 
formation and propagation, hillock formation and rim propagation, [5, 6, 9]. Numerous works  have 
proposed criteria for the stability of holes in thin films in terms of a critical radius, notably  e.g. 
[10, 13]. 

 
2. The model 
Let us consider an axi-symmetric grain that lies on a substrate and is bounded along its sides by a 
finite radius semi-infinite inert cylinder. The exterior surface of the grain meets the substrate with 
contact angle  𝛼𝛼 ∈ (0,𝜋𝜋) and normally intersects the bounding cylinder. In what follows all spatial 
variables were normalized by the radius of the cylinder, 𝑙𝑙, and all temporal variables were normalized 
by 𝑙𝑙4 𝐵𝐵⁄ ,  where 𝐵𝐵 is the Mullins coefficient for surface diffusion [8]. For a 3D view and a meridian 
cross-sectional  sketch of the geometry, see Fig. 1. We assume that the exterior surface evolves by 
(dimensionless) isotropic surface diffusion, 
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𝑽𝑽𝒏𝒏 = −∆𝑠𝑠𝜅𝜅,     (1)
  

where 𝑽𝑽𝒏𝒏 denotes the normal velocity, 𝒏𝒏 is an outward unit normal, 𝜅𝜅 is the mean curvature of 
the                    surface, ∆𝑠𝑠 is the surface Laplacian. For simplicity, additional physical effects, such as elasticity 
or anisotropy, have been neglected. We further assume no flux boundary conditions                                          at the substrate 
and at the inert wall, namely that [𝜏𝜏 ∙ ∇𝑠𝑠𝜅𝜅]|boundary = 0, where 𝜏𝜏 denotes a unit conormal vector to the 
exterior surface at the boundary and ∇𝑠𝑠 denotes the surface gradient operator. 

The steady states of (1), subject to the no flux boundary conditions, satisfy 

𝜅𝜅 = 𝐶𝐶,  𝐶𝐶 ∈ ℝ. 

Assuming axi-symmetry, the set of such surfaces, (Delaunay surfaces after Delaunay, 1841 [2]), are:  
planes, spheres, catenoids, unduloids, and nodoids. In the context of the present problem, the steady 
states are nodoids with (constant) negative mean curvature 𝐶𝐶 = 𝜆𝜆 < 0, where 𝜆𝜆 is determined by the 
contact angle and the grain volume. 

   

Figure 1: Sketch of an annular axi-symmetric grain, which lies on a substrate and is bounded by an inert  cylinder. 
The exterior surface of the grain normally intersects the bounding cylinder and intersects the substrate with 

contact angle 𝛼𝛼. The meridian cross-sectional profile of the grain is indicated in maroon. 

 
3. Results 
3.1 Energetic stability  
The surface diffusion problem formulated above constitutes 𝐻𝐻−1 gradient flow [4]                                                   for the energy, 
𝐸𝐸(𝑡𝑡), 

𝐸𝐸(𝑡𝑡) ∶= 𝐴𝐴ex(𝑡𝑡) + �
 𝛾𝛾gas

 𝛾𝛾ex� �𝐴𝐴gas(𝑡𝑡) + �
 𝛾𝛾grs

 𝛾𝛾ex� �𝐴𝐴grs(𝑡𝑡), (2)
   

where  𝛾𝛾ex,  𝛾𝛾gas, and 𝛾𝛾grs denote the surface free energy of the exterior surface, of the hole on the 

z 

𝑋𝑋(𝑥𝑥, 𝑦𝑦, 𝑧𝑧, 𝑡𝑡) 
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substrate which is exposed to gas or vacuum, and of substrate which is covered by the grain, 
respectively,                                                    and  𝐴𝐴ex(𝑡𝑡), 𝐴𝐴gas(𝑡𝑡), and 𝐴𝐴grs(𝑡𝑡) denote the corresponding surface areas. The 
energy 𝐸𝐸(𝑡𝑡) decreases                                                   (is non-increasing) during the evolution, while the grain volume is conserved 
[4, 15]. The critical points of  the energy which satisfy the angle boundary conditions correspond to 
the set of steady states  of our problem. Of interest is to identify the possible steady states, and to order 
them in accordance with their energy. 

     For 𝛼𝛼 ∈ (0,𝜋𝜋), the possible steady states, which correspond to nodoidal surfaces with constant 
and negative mean curvature, may be expressed via elliptic integrals and parametrized by their mean 
curvature, 𝜆𝜆  [4, 15]. In Fig. 2(a), we show the volumes of the nodoidal steady states as functions of 
the mean curvature,  𝜆𝜆 < 0, for a set of contact angles,  𝛼𝛼 ∈ (0,𝜋𝜋). The different colored curves in 
the figure correspond to different values of the contact angle. These results led us to formulate the 
following claim [4, 15]: 

    Claim 1: For 𝛼𝛼 ∈ (0,𝜋𝜋)  there is a function 𝑉𝑉max(𝛼𝛼) > 0, such that for any contact angle 𝛼𝛼 ∈ (0,𝜋𝜋) 
and for any grain volume 𝑉𝑉 ∈ (0,∞), if  0 < 𝑉𝑉 < 𝑉𝑉max(𝛼𝛼) there exist precisely two steady states, 
if         𝑉𝑉 = 𝑉𝑉max(𝛼𝛼) there exists precisely one steady state, and if 𝑉𝑉 > 𝑉𝑉max(𝛼𝛼)  then no steady states 
exist. 

 

 

Figure 2: (a) Volume, 𝑉𝑉, versus mean curvature, 𝜆𝜆, of the steady states for various values of the contact angle, 
𝛼𝛼 ∈ (0,𝜋𝜋). The critical mean curvatures, 𝜆𝜆𝑐𝑐(𝛼𝛼), are indicated along each of the α curves, and for 𝛼𝛼 = 1 rad 
the maximal, 𝑉𝑉max, and the critical, 𝑉𝑉𝑐𝑐  are also marked. (b) Critical mean curvature, 𝜆𝜆𝑐𝑐, maximal volume, 

𝑉𝑉max, and critical volume, 𝑉𝑉𝑐𝑐 , versus 𝛼𝛼. 

 

More specifically when 𝑉𝑉 ∈ (0,𝑉𝑉max), according to Claim 1 there is a pair of steady state solutions with 
the same                             contact angle, 𝛼𝛼, and volume, 𝑉𝑉; one of  the pair of steady states, which is to the left in Fig. 2(a) 
and we will denote by L, has smaller mean                                   curvature and the other steady state, which is to the right in 
Fig. 2(a) and we will denote by R, has larger mean curvature. We remark that though Claim 1 
characterizes the set of steady states and while off-hand one expects the energy of the system to 
decrease while the solution evolves towards one of the steady states,   there may be minimizing 
sequences leading to closure of the hole. Note that the resulting flat configuration which no longer 
contains a hole, no longer satisfies the contact angle boundary conditions; hence it is not strictly 
speaking a steady state for the problem which we described above, consisting of Eqn. (1) and the no-
flux and prescribed angle boundary conditions. To gain insight into the limiting evolution, we 
evaluated the respective energies, 𝐸𝐸𝐿𝐿 and 𝐸𝐸𝑅𝑅, of the steady states L and R, as  well as the energy 𝐸𝐸flat 
of the flat configuration. We conjecture that for initial conditions satisfying the boundary conditions 
with volume greater than 𝑉𝑉max, the evolution will be towards the closure of the hole, even though the 
flat state is no longer the solution of the originally formulated  problem. 

     Our numerical results [15] indicate that for all 𝛼𝛼 ∈ (0,𝜋𝜋), there exists a unique value 𝜆𝜆𝑐𝑐 ∈
(−∞, 0) such that 𝐸𝐸(𝜆𝜆𝑐𝑐 ,𝛼𝛼) = 𝐸𝐸flat; the dependence of 𝜆𝜆𝑐𝑐 on α is shown in Fig. 2(b). Furthermore, 

 

𝐸𝐸(𝜆𝜆,𝛼𝛼) < 𝐸𝐸flat  if    𝜆𝜆 < 𝜆𝜆𝑐𝑐, 𝐸𝐸(𝜆𝜆𝑐𝑐 ,𝛼𝛼) = 𝐸𝐸flat,   𝐸𝐸(𝜆𝜆,𝛼𝛼) > 𝐸𝐸flat  if  𝜆𝜆𝑐𝑐 < 𝜆𝜆 < 0,           (3) 

(a) (b) 
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and moreover, for all 𝛼𝛼 ∈ (0,𝜋𝜋), there exists a critical volume, 𝑉𝑉𝑐𝑐(𝛼𝛼) ≔ 𝑉𝑉(𝜆𝜆𝑐𝑐 ,𝛼𝛼), such that  

1. 𝐸𝐸L < 𝐸𝐸flat < 𝐸𝐸R, if  0 < 𝑉𝑉 ≤ 𝑉𝑉𝑐𝑐(𝛼𝛼), 

2. 𝐸𝐸flat < 𝐸𝐸L < 𝐸𝐸R, if  𝑉𝑉𝑐𝑐(𝛼𝛼) < 𝑉𝑉 < 𝑉𝑉max, 

3. 𝐸𝐸flat < 𝐸𝐸L = 𝐸𝐸R, if  𝑉𝑉 = 𝑉𝑉max, 

4. for 𝑉𝑉 > 𝑉𝑉max,  there are no steady states, though the flat configuration constitutes a possible  
limiting configuration. 

Note that experimental measurement of the mean curvature of the exterior surface of a grain and  
its spatial variations is typically problematic [14]. Thus, to formulate a criterion which is simpler to 
verify experimentally, we have defined, 𝑟𝑟eff, the effective radius as  

𝑟𝑟eff ≔ �1 − 𝑉𝑉
𝜋𝜋𝜋𝜋(1) ,       (4) 

where in (4) 𝑧𝑧(1) = 𝑧𝑧(𝑥𝑥 = 1) denotes the grain height at the wall  of  the steady state. The effective 
radius, 𝑟𝑟eff, was seen numerically to depend monotonically on 𝜆𝜆. This                  allowed us to transform the 
variables (𝜆𝜆,𝛼𝛼) → (𝑟𝑟eff,𝛼𝛼), which allowed us in particular to uniquely define a critical effective 
radius, 𝑟𝑟eff

𝑐𝑐 , as 𝑟𝑟eff
𝑐𝑐 ≔ 𝑟𝑟eff(𝜆𝜆𝑐𝑐). Surprisingly, we found that 𝑟𝑟eff

𝑐𝑐  ≈ 0.577 is independent of the 
contact angle, 𝛼𝛼, making it an even more convenient tool for experimental verification. Thus (3), 
may be rewritten in terms of 𝑟𝑟eff

𝑐𝑐  as follows, 

 
𝐸𝐸(𝑟𝑟eff,𝛼𝛼) > 𝐸𝐸flat   if   𝑟𝑟eff < 𝑟𝑟eff

𝑐𝑐 , 𝐸𝐸(𝑟𝑟eff
𝑐𝑐 ,𝛼𝛼) = 𝐸𝐸flat,      𝐸𝐸(𝑟𝑟eff,𝛼𝛼) > 𝐸𝐸flat   if   𝑟𝑟eff

𝑐𝑐 < 𝑟𝑟eff.          (5) 

 
See [15] for details. While various definitions of the critical radius have appeared over the years, 
perhaps most remarkably by Safran & Srolovitz [10], our definition strongly reflects the properties 
of the steady states and thus yields a quite accurate connection with surface diffusion dynamics, as 
we shall see shortly.  Note that formal evaluation of 𝑟𝑟eff for a flat configuration yields that  𝑟𝑟eff

flat = 0. 
 

3.2 Dynamic stability  
In this section, we describe the results of our simulations for nodoids, with volume smaller than 𝑉𝑉𝑐𝑐. 
According to the previous section, in this case (see 1.) the left steady state, L, is a global energy 
minimizer, in particular it has lower energy than any other steady states and less energy than the flat 
configuration, so it should be linearly as well as non-linearly stable. On the other hand, the right steady 
state, R, is not even a local energy minimizer, so it cannot be expected to be (linearly or non-linearly) 
stable. In our dynamic simulations, we found that initial conditions which are a zero-volume 
perturbation of a right steady state, R, may either converge to its “left’’ stable partner, L, or evolve until 
the hole closes, where the basins of attraction for the evolution depends delicately on the time  step size 
in the simulation. 

In Figs. 3–5 we show examples of the dynamic evolution of zero volume perturbations of  both 
steady states, R and L, which correspond to 𝛼𝛼 = 1 rad and 𝑉𝑉 = 0.328 < 𝑉𝑉𝑐𝑐. In Fig. 3 we portray the 
evolution of a zero volume perturbation of the stable state, L, where it  can be seen that the 
perturbation diminishes with time until the solution converges to a nodoid, which closely 
approximates the original unperturbed steady state nodoid.  In Fig. 4, we show the evolution of a zero 
volume perturbation of right steady state R, which converges to its left steady state partner, L, where 
the time step size is ∆𝑡𝑡 = 0.01 and the steady state solution is reached at about time 𝑇𝑇 = 1. It can be 
seen that initially the perturbation diminishes and the exterior surface is very close  to that of the 
initial nodoid, then it rapidly shrinks, later slowing down as it approaches steady state.                 In particular, 
this simulation visualizes the notion that thin grains tend to shrink faster than thicker grains, whose 
shape is somewhat reminiscent of hillock formations observed in experiment. Thus, this simulation 
provides some intuition with regard to various experimentally observed phenomena [5]. 
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     In Fig. 5, we show the evolution of a zero volume perturbation of the partner R, which expands 
until    the hole closes. In this simulation ∆𝑡𝑡 = 1.705 ∙ 10−6, and the hole closes approximately at 
𝑇𝑇 = 1.705 ∙ 10−4.  Note that initially the evolution is very slow; first the profile of the exterior surface    
and the mean curvature become monotone increasing functions of 𝑥𝑥, and then the contact  line speeds  
up and the velocity of its motion continuously increases as the hole radius decreases. 

 

  

Figure 3: Meridian cross section portrayal of the evolution of a zero volume perturbation of a stable 
nodoidal steady state, with 𝛼𝛼 = 1 rad and 𝜆𝜆 = −0.7 (𝑉𝑉 ≈ 0.328). The blue curve corresponds to the initial 

steady state, the red curve corresponds to the steady  state solution, the green, black, and violet curves 
correspond to the solution 𝑧𝑧 versus 𝑥𝑥 at times: 𝑡𝑡 = 0,  𝑡𝑡 = 0.01, and 𝑡𝑡 = 0.02, respectively. 

 
 

 

Figure 4: Evolution of a zero volume perturbation of an unstable (nodoidal) steady state (convergence to its 
more stable “partner,” where ∆𝑡𝑡 = 0.01), with 𝛼𝛼 = 1 rad and 𝜆𝜆 = −0.042 (𝑉𝑉 ≈ 0.32). The blue curve 

corresponds to the initial nodoid, the red curve corresponds to the steady state solution (obtained at 𝑇𝑇 = 1), 
the maroon, black, and violet curves correspond to the solution 𝑧𝑧 versus 𝑥𝑥 at times: 𝑡𝑡 = 0, 𝑡𝑡 = 0.03, and     

𝑡𝑡 = 0.06,  respectively. 
 

 

   

Figure 5: Evolution of a zero volume perturbation of the same unstable nodoidal steady state as in Fig. 4 (with 
𝛼𝛼 = 1 rad and 𝜆𝜆 = −0.042), but with smaller time steps, ∆𝑡𝑡 = 1.705 ∙ 10−6, which results in the closure 
of                                              the hole (which occurs for 𝑇𝑇 = 1.705 ∙ 10−4). The blue curve corresponds to the initial (unperturbed) 

nodoidal steady state, the  red curve corresponds to the solution just prior the hole closure, the maroon, black, 
and violet curves  correspond to the solution 𝑧𝑧 versus 𝑥𝑥 at times: 𝑡𝑡 = 0, 𝑡𝑡 ≈ 1.7 ∙ 10−5, and 𝑡𝑡 ≈ 1.7 ∙ 10−4, 

respectively. 

 

(a) (b) (c) 

(b) (a) (c) 

(c) (a) (b) 
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In Fig. 6, we show the evolution of a zero volume perturbation of the R partner in the pair of 
steady states, with 𝛼𝛼 = 1 rad, 𝜆𝜆 = −0.042, and with smaller time steps during the simulation, ∆𝑡𝑡 =
1.705 ∙ 10−6. The evolution results in hole closure, accompanied by the formation of a void below 
the surface. Clearly a limiting  configuration without a void would be energetically preferable, and 
once formed, the void can be locally translated without altering the energy of the system. 

 

Figure 6: Evolution of a zero volume perturbation of an unstable nodoidal steady state with 𝛼𝛼 = 2.5 rad 
and 𝜆𝜆 = −0.3, and with time steps, ∆𝑡𝑡 = 0.0129, which results in the closure of the hole (which occurs 

for                    𝑇𝑇 = 1.03465). The blue curve corresponds to the initial (unperturbed) nodoid, the red curve 
corresponds to the                           solution just prior the hole closure, the maroon, black, and violet curves correspond to the 

solution 𝑧𝑧 versus 𝑥𝑥 at times: 𝑡𝑡 = 0, 𝑡𝑡 ≈ 0.26, and 𝑡𝑡 ≈ 0.9, respectively. 

 

4. Conclusions 
We have seen that our simple system can mimic many phenomena occurring during wetting and 
dewetting, including hillock and void formation, as well as hole closure and stable hole formation. 
We are extending our study of steady states and their energetic and dynamic stability to encompass 
arguably more realistic systems containing additional grains and holes. 
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