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Abstract 
The field of hydrogeology is primarily concerned with the flow of water below the 

ground surface and with transport, normally of solutes and heat, within that water.  Many 
disciplines have contributed to this endeavor which requires skills from across the 
spectrum of science, engineering and beyond.  The diffusion equation describes not only 
solute transport but also the flow of water, via Darcy’s law.  Of particular interest is 
transport in fractured rock where most of the flow is through the fractures while most of 
the storage is in the rock pores: a ‘double-porosity’ system.  Hydrogeology remains a 
field that welcomes those who bring techniques from other areas of science to address 
problems as varied as water supply, radioactive waste disposal and geothermal energy. 
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1. Introduction 
People with backgrounds in many different disciplines would refer to themselves as a 

hydrogeologist.  For example there are those working in organizations such as the World 
Bank that deal primarily with socio-economic issues of water supply; then there are those 
who are concerned with physics relating to the safe disposal or radioactive waste.  Many 
other people who contribute to hydrogeology consider themselves as working in different 
disciplines, e.g. soil physics. What all of these people have in common is that they are 
concerned about fluid, normally water, flow below the ground surface and transport 
within that fluid. 

Here are some other activities, beyond water resources, where you would find 
hydrogeologists taking a major role if not the lead: geothermal energy exploration, 
remediation of contaminated land, ecological protection, landfill design, mine drainage, 
dewatering of construction sites, dam design, carbon dioxide sequestration, and 
radioactive waste disposal. 

Hydrogeology is primarily an applied science aimed at aiding decision making and 
those decisions are almost invariably underpinned by modelling.  Indeed almost any form 
of training in hydrogeology will involve an introduction to modelling and every year 
there are international conferences on that topic; sometimes those meetings even focus on 
the use of a particular model or a particular technique, such as the finite-element method. 

   

1

The Open-Access Journal for the Basic Principles of Diffusion Theory, Experiment and Application

© 2007, J. Barker
Diffusion Fundamentals 6 (2007) 50.1 - 50.18



 

Most of the models used by hydrogeologists deal with the flow of water and many 
also include a transport process: most commonly the transport of a dissolved substance 
but also heat and particle transport.   

The aims of this paper are: to explain the occurrence of diffusion processes in 
hydrogeology; to outline some of the techniques that we use, both experimentally and in 
modelling; and to show that interesting challenges remain.  Hydrogeology has always 
borrowed methods from other disciplines and the hope is that this paper will help 
continue that process.  It is also possible that some of our approaches that I describe 
could be adapted for use in other fields.   

A very readable introduction to hydrogeology was provided by Price [1]. 

2. The occurrence of the diffusion process in the subsurface 
Water, solute and heat transport are all of importance in the subsurface, often these 

are coupled but we will consider them separately here.  The flow of water is often the 
dominant transport process and, since it is least obvious why the flow of water should be 
regarded as a ‘diffusive’ process, it will be dealt with at some length. 

2.1  Water flow 
Water occurs in and flows through the voids in the subsurface which can vary greatly 

in their geometry and size.  Whenever this flow occurs energy is lost due to viscous 
forces, hence water must flow from places where it has higher energy to places where it 
has lower energy.  This problem was considered most eloquently by Hubbert [2] who 
showed that the energy per unit mass of a fluid can be written in the form: 

ρ
pghvH ++=

2

2
 (1) 

We often refer to H as the Hubbert potential but also as the total head as, relative to an 
appropriate datum, it is represented by the level that water will rise in a well.  The above 
expression will be familiar to most readers as the quantity that remains constant along a 
flow path in the Bernoulli equation, which we recall applies to non-viscous flow. 
 We conclude that water will flow in the direction of decreasing total head, i.e. in the 
direction of the vector -∇H.  However, this was known empirically long before 
considerations of the physics: most notably, 150 years ago, Darcy [3] showed that flow 
rate is proportional to head difference in a set of rather elegant experiments.  Nowadays 
we would write the volumetric flow rate, volume of fluid per unit time per unit area, q, 
as: 

H∇−= Kq  (2) 
where tensor K is known as the hydraulic conductivity.  In acknowledgment of Darcy’s 
work, often regarded as the first scientific contribution to hydrogeology, we both refer to 
this equation as Darcy’s Law and the quantity q as the Darcy velocity.  Darcy’s equation 
is clearly equivalent to Fick’s first law; now we will see how groundwater flow gives rise 
to an equation equivalent to Fick’s second law.  
 Water and rock are compressible; they are not very compressible – for water 
(ΔV/V)/ΔP ≈ 5×10-10 Pa-1 – but there is a lot of water below the ground surface.  Most 
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rocks of practical interest for water supply have porosities between 10% and 40%, so a 
small change in pressure can be associated with a significant exchange of water.  
If we push a volume ΔV of water into unit volume of the subsurface then, assuming 
elastic behavior, this would be accompanied by a pressure change and hence a small 
change in head ΔH.  If we assume elastic behavior we expect ( ) HtV Δ∝Δ∇−=Δ q. .  
In fact we characterize the combination of the elasticity of the water and rock into a 
single parameter called the specific storage, Ss, and write q./ ∇=∂∂ tHSs . Combining 
this with Darcy’s law given above we have an equation for transient groundwater flow 

).( H
t

HSs ∇∇=
∂
∂ K  (3) 

which we recognize as equivalent to Fick’s second law of diffusion.  As the reader may 
have guessed, we could derive this same equation from the Navier-Stokes Equations.  
That approach would also result in a more general form where the fluid density and 
pressure are both scalar fields; that is the form normally employed in numerical models. 

2.2  Solute transport 
Let’s move on now to consider solute transport in the subsurface.  It needs little 
introduction and will come as no surprise that solute transport can often be described by 
an advection-dispersion equation: 

).(. cnc
t
cn ∇∇=∇+
∂
∂ Dq  (4) 

where c is concentration (mass/volume), n is the porosity, q is the Darcy velocity and D 
is a tensor with elements called the coefficients of hydrodynamic dispersion.  For 1-D 
transport we would often write the longitudinal coefficient as 

vDD LdL α+=  (5) 

where Dd is the molecular diffusion coefficient, vL is the velocity and αL is called the 
(longitudinal) dispersivity.  The form of Eq. (5) has been confirmed in many laboratory 
experiments giving data such as that shown in Fig. 1. 

2.3  Heat transport 
Heat transport in the subsurface is analogous to solute transport and, as expected, this 

gives rise to transport equations such as: 

TT
t
T 2∇=∇+
∂
∂ κq.  (6) 

where T is the temperature and κ is the thermal diffusivity.  The coupling between 
density, temperature and pressure is so strong that we rarely solve this equation in 
isolation and numerical models normally have to be used.  An exception is for ‘low 
enthalpy’ geothermal systems. 
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Fig. 1.  The increase of longitudinal dispersion with velocity showing that the 
dispersion coefficient tends to the molecular diffusion coefficient for small 
velocity and becomes proportional to velocity at high velocities.  (From [4].) 

 

3. Why is hydrogeology difficult? 
It would be quite reasonably to look at the equations above and think that 

hydrogeology must be really quite simple.  The equations are normally linear and are 
very common, so numerous analytical solutions are available and numerical models that 
are capable of solving these equations abound. What makes the life of the hydrogeologist 
difficult is that:- 

a) the subsurface is extremely heterogeneous; 
b) the boundaries of our systems are uncertain; 
c) the stresses on these systems are highly variable and uncertain (e.g. rainfall, 

pollution incidents); and, perhaps most importantly, 
d) it is very difficult to access the subsurface to make observations either of the fabric 

of the rock or of the transport processes. 
Heterogeneity in the subsurface is often a reflection of geological changes and 

stresses.  Many rocks are fractured and flow through fractures often totally dominates 
over from the surrounding porous rock.  For example, the intact rock, between the 
fractures, shown in Fig. 2 probably has a hydraulic conductivity of about 10-7 m/s.  
Suppose we had a kilometer thickness of such intact rock, then a single horizontal 
fracture with an aperture of just one millimeter would carry as much water as the intact 
rock for the same head gradient! 

With regard to storage, however, the situation is reversed: typically the fractures will 
only contribute a few percent to the porosity.  We refer to such systems, where fractures 
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dominate flow while the rock ‘matrix’ pores dominate storage, as a ‘double-porosity’ 
system.  The term ‘dual-porosity’ is also used.  When considering water flow this is taken 
to occur in both the fractures and rock matrix, with a flow interchange between the two.  
Normally when considering solute or heat transport, the matrix pore water is 
approximated as being static and then we often refer to ‘mobile’ (fracture) water and 
‘immobile’ (pore) water. 

 

 
 
Fig. 2.  Typical fractured rock (limestone).  We would normally 
model this as a ‘double-porosity’ system.  Note that it is difficult to 
determine the scale from such pictures. 
  

 
In applied geology we take a very broad view of what can be regarded as ‘rock’.  For 

example, I am currently involved in a large project on flow and transport in landfills: we 
regard this waste material as part of the fabric of the earth’s surface but with a few 
unusual heterogeneous features (e.g. plastic bags). 

 

4. The hydrogeologist in the field 
Imagine a hydrogeologist arriving on a Caribbean island with the remit to assess the 

water resources of the island.  He will identify any wells and try to make sure these are 
properly surveyed so their relative elevations are known.  Then he will find the depth to 
water in the wells and thus determine the relative heads.  A contour plot of those heads 
gives the flow directions, in the same way that any topographical map indicates the slope 
of the land.  In principle, the curvature of that surface should give an indication of the 
rainfall input, however, I have never seen data good enough to make that calculation. 
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But this only tells the hydrogeologist the direction of groundwater flow and the 
gradient of head.  What he really wants is the hydraulic conductivity to put into Darcy’s 
law to estimate flow rates. 

4.1  The pumping test 
The hydrogeologist would try to arrange for water to be pumped from some of the 

wells and for observations to be made of the response of the water levels in the same 
wells or (preferably) neighboring wells.  Such a procedure is called a ‘pumping test’ and 
is normally carried out over a period of several days.  If he can carry out such an 
experiment, he will start the analysis by plotting the data in various forms.  He will hope 
and very often observe that the data will conform to the solution of the diffusion equation 
given by Theis [5], one of the most useful results in hydrogeology.  This ‘Theis solution’ 
gives the change in head at radius r at time t in terms of the pumping rate, Q, and aquifer 
properties K and Ss: 

( )
bKt

rSuu
bK
QH s

4
whereE

4

2

1 ==Δ
π

 (7) 

where E1 is an exponential integral and b is the thickness of saturated rock. 
Indeed, it appears that the transient flow equation, Eq. (3) was first written, in relation 

to this problem of (cylindrical radial) flow to a well, by Theis [5].  And, since the solution 
is of such practical importance, Theis is rarely recognized for having been one of the first 
to identify the significance of elasticity, in the way that Fourier has been recognized for 
the equivalent result in heat transfer. Also it is a pity in that it is clear that the 
mathematical solution was obtained not by Theis himself but by a more mathematically 
skilled colleague. 

At large times (small u) the E1 function in Eq. (7) tends to a logarithm, so a plot of 
head change, ΔH, against ln(t) should tend to a straight line with slope Q/4πbK.  So our 
hydrogeologist will commonly aim to construct this graph and estimate the hydraulic 
conductivity, K, as the long-time slope multiplied 4πb/ Q.  (Asymptotic analysis is very 
important for data analysis in hydrogeology.)  In practice, that straight line will appear 
but often, especially for long pumping tests, with then increase in slope by a factor of two 
or decrease to zero.  These features indicate the influence of a linear barrier (e.g. a fault) 
or a source of water (e.g. a lake), respectively, and can both often be analyzed by the 
method of images. 

A remarkable finding is that this head versus log(time) slope analysis always appears 
to gives the arithmetic average permeability, K, of the subsurface, no matter how 
heterogeneous, but I am not aware of a general proof.  One finding for which there is a 
general mathematical proof [6,7] is that if you pump at one point and observe the head 
changes at another, then if you reverse the points the same response will be obtained, no 
matter what the heterogeneity provided the flow remains diffusive, i.e. conforms to Eq. 
(3).   

So, a good way to think of this pumping test is that it is a test that by its very nature 
overcomes the complexities (heterogeneities) of the subsurface.  The same is true of the 
other field technique I want to mention, tracer tests.   
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4.2  The tracer test 
There are written accounts of the use of tracers in relation to natural water flow going 

back at least to Roman times.  For example, Roman historian Josephus reports, in his 
“Wars of the Jews”, a test being carried out using chaff.  The tracers commonly in use 
today are:- 

• Particles: e.g. Lycopodium spores, Microspheres 
• Microbiological: e.g. Bacteriophage 
• Inorganic salts: e.g. Cl, Li 
• Fluorescent dyes: e.g. Rhodamine WT, Fluorescein 
• Fluorocarbons: e.g. SF6, Freon (including CFCs) 
• Isotopes: e.g. Br-82, Cl-36, I, Tritiated water, Deuterated water 

The list is restricted by a number of factors, particularly detectability and the 
avoidance of risk to health.  

We can in this way establish connections from one place to another.  Typically we put 
the tracer into a well and observe at another well.  Often we never see our tracer again but 
if we are lucky we obtain concentration versus time data that we can analyze for transport 
parameters such as travel time and dispersivity. 

Fig. 3 shows a collection of values of dispersivity, αL, in Eq. (5) and this is seen to be 
dependent on the scale.  Such scale dependence (sometimes referred to as ‘anomalous 
dispersion’) has been the subject of a great deal of speculation and innovation [8] but 
remains a problem.  At the practical level of modelling, what most hydrogeologists are 
forced to do is to run their models with a variety of dispersivity values which is obviously 
inconsistent.  At a theoretical level this has led to considerations such as transport on 
fractals and use of the continuous-time random walk theory [9]. 

 

 

 
 
 
 
 
 
Fig. 3  Scale-dependence 
of dispersivity, α.   
(From [10].) 
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5. The hydrogeologist in the laboratory 
The hydraulic conductivity of a rock is obviously amenable to measurement by 

passing water through a sample and measuring the head difference for a given flow rate.  
Often, however, we use gas instead of water to make such tests faster, and correct for the 
viscosity.  Other corrections are sometimes applied due to ‘gas slippage’. 

Hydrogeologists need molecular diffusion coefficients for their models.  Much work 
has been done, in particular, to determine coefficients for the diffusion of radionuclides in 
various rocks, in relation to the subsurface storage of radioactive waste.  Mostly the 
experiments are of the standard design with two cells separated by a thin sheet of rock.  
However, an experiment carried out by some of my colleagues in the British Geological 
Survey [11] used a rather unusual arrangement (Fig. 4).  Essentially this is a reaction 
vessel with the blades of the stirrer replaced by a standard (‘one-inch’) rock core   

 
Fig. 4.  Schematic representation of analytical equipment used to determine diffusion 
of chloride (or bromide) from consolidated porous plugs. (From [11].) 
 

Electric Stirrer 
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A very common type of experiment carried out in our laboratories is to pack a column 

with material and pass water and chemicals through, under a vertical head gradient.  
Normally we analyze what comes out of the bottom or top, a ‘breakthrough curve’, of 
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such a column but sometimes the column is taken apart, sometimes after freezing, to 
obtain a spatial distribution. 

 

6. Some modelling approaches 

6.1. Numerical modelling 
Given the heterogeneity of the subsurface and the complex boundaries involved, it is 

not surprising that modelling methods such as the finite element method have attracted 
much attention in hydrogeology. The method allows us to vary boundaries and regions of 
variable properties greatly as well as refine the mesh around points of specific interest.  
When the heterogeneity is not too great, the boundary integral equation method 
(equivalently, the boundary element method) becomes a particularly useful tool.  
However, finite difference models are also widely used and the most commonly used 
code, Modflow, is of this type. 

Particular challenges to flow modelling are thrown up by the nonlinear behavior of 
the water table and seepage faces.  Similarly, nonlinear sorption can cause difficulties for 
transport modelling. 

6.2. Laplace-transform analytical solutions in hydrogeology 
Consider advective transport through a channel containing blocks of rubble, Fig. 5. 
 

 

 
Fig. 5.  An example of 
a ‘double-porosity’ 
system.  Advective 
transport through a 
channel (into the page) 
with diffusive 
exchange (arrows) 
from mobile water into 
a relatively immobile 
pore water within 
internal ‘blocks’ and 
external to the channel. 

Advection 
in channel 

Diffusive exchange 
with immobile pore 
water 

 
Let’s ignore dispersion and assume good mixing at any distance along the channel, so 

we have a single ‘mobile’ water concentration, c(x,t), at any distance x along the channel.   
A Laplace transform solution can be written: 
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Here p is the transform variable, c(0,t) is the input concentration (assumed known), ta 

is the travel time to point x, σ is the ratio of block porosity to channel porosity, ρ is the 
ratio of porosities outside and inside the channel.  I refer to the two functions B and C as 
the ‘Block Geometry Function’ (BGF) [12,13] and ‘Channel Geometry Function’ (CGF), 
respectively.  Chemical engineers will recognize B as being equivalent to their 
‘effectiveness factors’ [14].  Simple examples are B(x) = tanh(x)/x for slab-shaped blocks 
and C(x) = K1(2x)/[x.K0(2x)] for a circular channel. These functions depend only on the 
geometry of the blocks and the channel, respectively, and contain all of the relevant 
information: sizes are contained in the parameters tcb and tcc. 

In the time domain, we can write a partial-integro-differential equation where the 
BGF appears, in inverse form, as the kernel of the integral: see [13].  Such equations are a 
natural basis for numerical modelling. 

The characteristic time for diffusion across a block, tcb, is equal to the square of the 
volume-to-area ratio divided by the diffusion coefficient within a block, as in Fick’s 
second law.  Similarly, the characteristic time for diffusion out of the channel, tcc, is equal 
to the square of the channel area-to-perimeter ratio divided by the diffusion coefficient 
outside the channel.   

A practical elegance of this formulation is that the B and C functions are readily 
replaced to reflect different geometries without affecting any other part of the 
formulation.  Also, for mixtures of blocks of different shapes and sizes, we can write an 
effective function: 

∑∫
=

∞

⎟
⎠
⎞

⎜
⎝
⎛=

n

i
iieffective d

b
xP

1 0

B)(B βββ  (9) 

where Pi(β) is the proportion by volume of blocks of shape i in the size range β to β+dβ 
(β = volume/area for a block). 

To avoid the impression that the above form of solution is restricted solute transport 
through voids filled with blocks, I give a further solution for flow to a well in a fractured 
rock formation: imagine a hole drilled into the rock shown in Fig. 2.  The change of head 
in the well when pumped at volumetric rate Q has the general form: 

⎥⎦
⎤

⎢⎣
⎡ ⎟

⎠
⎞⎜

⎝
⎛ ++

=
))B(1(C

)2/()(
21 cb

w

ptptptp

KbQpH
σ

π  (10) 

where K and b are the hydraulic conductivity and thickness of the rock formation C 
characterizes the shape of the well, normally a tube, and B characterized the shapes of the 
porous blocks.  Note that the B function is contained within the argument of the C 
function. (The times, t1 and t2, characterize the well storage and well diameter, 
respectively.  Incidentally, if we set t1=σ=0, so there is no well storage or matrix storage, 
Eq. (10) gives the Laplace transform of the Theis solution given in Eq. (7).) 

The two functions B and C not only arise in relation to Laplace transform solutions of 
transient problems but also in relation to periodic behavior (when the Laplace transform 
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variable p would be replaced by iω) and steady-state solutions with ‘production’, e.g. 
rainfall for flow or radioactive decay producing daughter products such as radon (when p 
would be replaced by the decay constant). 

6.3. First-order exchange 
In most branches of hydrogeology and transport science more generally, a first-order 

exchange approximation is assumed.  This is for example called a ‘dead-end pore model’ 
(especially by soil scientists), ‘quasi-steady-state model’ and ‘pseudo steady-state 
model’: I’m sure there are other names  

Normally this enters our transport equations in the form: 

( ) sother term+−Φ=
∂
∂ φαφ

cbtt
 (11) 

where φ is a potential (e.g. concentration, head or temperature) of the mobile phase and Φ 
is the average potential of the immobile phase, and α [T-1] is the exchange coefficient. 

Formulated as a BGF this gives: 
( )

cb

cb
cb tp

tpt
x

x
/

/,Bproblems,ent for transi or,),B( 2 α
αα

α
αα

+
=

+
=  (12) 

If diffusion is the true underlying exchange mechanism, this can be regarded as an 
approximation and an important issue is how to select the parameter α appropriately. 
Two approaches are: (a) to expand Eq. (12) and the BGF of interest as a Maclaurin series, 
then matching to giving )0(B/2 ′′−=α , or (b) to compare partial fraction (Mittag-Leffler) 
expansions.   For a slab geometry, B(x) = tanh(x)/x, these two approaches give α = 3 and 
α = π2/4, respectively.  For long-time asymptotic behavior (where α/tcb becomes the 
decay constant), since ( ){ } ktekpL −− =+11 , the latter result (α = π2/4) is the more 
relevant.  However, there remains considerable disagreement in the hydrogeology 
literature over the appropriate choice of the parameter α, if chosen to approximate a 
given BGF for a given block shape.  My own view [13] has always been that either or 
neither approach may be valid given that the BGF can appear in so many different ways, 
as a functional, in a solution (e.g. Eq. (10)).   

These issues have been revisited recently by one of my students [15] who has shown, 
for example, that the Maclaurin-expansion comparison method is equivalent to temporal-
moment matching.  It would be of interest to hear how this issue has been dealt with in 
other fields. 

In more general terms, if we expand any BGF, for a specific geometry or as in Eq. 
(8), in partial fractions we obtain a sum of terms, such as that on the right of Eq. (12), 
which represent a set of first-order exchange coefficients.  The existence of such a set has 
been the starting point for modelling by some researchers [16] and is possibly more 
popular than the BGF approach, at least in the US. 

 

6.4. Numerical inversion of Laplace transforms 
We tend to favor Laplace transform solutions as analytical inversion is often difficult 

if not impossible, for their simplicity, as exemplified above, and for the ease of extracting 
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asymptotic behavior and moments.  But of course, in practice we normally need time-
dependent solutions: since analytical inversion is normally difficult and sometimes 
impossible, we use numerical inversion of the Laplace transform.   

Although this inversion is an ill-conditioned problem, many methods have been 
proposed.  For the types of transport problems I have encountered in hydrogeology I 
prefer to formulate my codes to use both the Talbot method [18] and the deHoog [19] 
method: the former tends to be quicker and can be very accurate, the latter is more robust 
but can be significantly slower.   However, given that both of those methods require the 
transform to be given as a function with a complex argument, I often initially use a 
scoping code (only eight lines long) based on the Stehfest [20] algorithm where the 
transform function has a real argument.  

It is worth mentioning that some use is made in hydrogeology of hybrid methods 
where we take partial differential equations and remove the t∂∂ /φ  term of the diffusion 
equation by the Laplace transform, giving )0(φφ −p , and then solve the spatial part of 
the problem by the usual finite-difference or finite element approaches.  This approach 
was to the best of my knowledge first published in the heat transport literature in the 
1970s. 

6.5. Parameterization 
What the above solution brings out is that we can normally parameterize these 

transport systems in terms of a set of times and storage ratios.  This is often a great help 
in understanding the behavior of a system.  For example, the three characteristic times in 
Eq. (10) can be ordered in 3! ways, so there are possibly six characteristic forms of 
behavior.  (Hydrogeologists will probably note, however, that t2 is, in practice, always 
smaller than the other two so there are really just two forms of behavior.) 

Moreover, consideration of those times often helps us make approximations and 
formulate numerical solutions.   

Of course we often have advantages in writing our equations in terms of 
dimensionless quantities.  However, it is worth noting that commonly encountered 
dimensionless groups can be re-written in terms of the ratio of two times, e.g.: 

2
Diffusion

Advection

tvL v LPe
D L D t

= = =  (13) 

By dividing each of the set of characteristic times for a given problem by the time of 
prime interest, one that will never be zero, the most appropriate groups will tend to arise. 

For double-porosity systems the function B(x) tends to unity as x tends to zero hence, 
from the properties of the Laplace transform, we see that at long times 1+σB tends to 
1+σ.  What this represents is that at long times the effective storage is the total storage 
and the tcb parameter becomes unimportant.  Similarly, B(x) tends to 1/x as x tends to 
infinity and this indicates that at short times ( )cbptBσ  can be approximated by 

2/1 σcbpt .  This makes sense physically in that this expression represents 1D diffusion 

into the near surface of the blocks: the time  represents the characteristic time for 
the fracture water to equilibrate with an equal volume of matrix pore water.   

2/σcbt
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The general point to draw from this is that for double-porosity systems the single 
parameter is controlling at short times, both σ and t2/σcbt cb at intermediate times, and σ 
alone at long times.  The recognition of such behaviour, the change of effective 
parameters over time, which must occur in many transport problems, is particularly 
important to experimental design and to data analysis. 

 

7. Flow dimension: anomalous hydraulic diffusion 
I would now like to consider one implication of heterogeneity for flow: one that I 

have found particularly interesting.   
If we consider flow to a well in a fractured rock system (e.g. Fig. 2) then it is not 

unreasonable to question a natural assumption in the Theis solution, Eq. (7), that the flow 
pattern is two-dimensional ‘cylindrical’ flow to the well.   

I first began work on this issue in the 1980s when I was analyzing hydraulic data from 
a mine as part of a radioactive waste disposal investigation.  I came to the conclusion that 
it is best to regard the flow dimension as a parameter that must be determined empirically 
and which may not have an integer value [21].  Incidentally, the generalization of the 
Theis solution, Eq. (7), is obtained by replacing the exponential integral 

by the incomplete gamma function ( uu ,0)(E1 Γ= ) ( )ud f ,12−Γ  where df is the flow 
dimension. 

This idea of flow dimension has been applied quite widely over the last twenty years 
and tends to reveal dimensions in the range 1.3 to 1.8.  The reason I favor as an 
explanation is shown in Fig. 6.  This is the result of a simulation to flow in a randomly 
fractured medium to a central point in the plane. Most of the flow is confined to just 10% 
of the fractures (right) and clearly the flow pattern is rather like the spokes on a wheel: 
one-dimensional. 

 

  
Fig. 6.  Flow in a dense 2D random network (left) with variable conductivity gives rise to 
channeled flow (right) with dimension close to 1D. 
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However, a rather different approach has been taken in the petroleum literature [22].  
The starting point of that approach is that rocks often look fractal (e.g. it is difficult to 
guess the scale for Fig. 2) and statistical analysis of fracture patterns in rock (e.g. box-
counting) bear this out.  This naturally leads to the idea that flow in fractured rock should 
be regarded as diffusion on fractals, and in [22] it is assumed that this should be 
described by a diffusion equation of the form: 

⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

∂
∂

=
∂
∂ +−

− ),(),( 1
1

0 trH
r

r
rr

DtrH
t

wf

f

dd
d

 (14) 

This equation has the associated anomalous diffusion relation: ( ) wdttr /22 ~〉〈 in which 
is the mean squared distance covered in time t and d( )〉〈 tr 2

w is the ‘walk dimension’.  
This generalizes my approach where I had effectively assumed dw=2.  However, the 
above diffusion equation is just one of several that have been proposed [23]. 

Interest in this issue led us to simulate random walks on the Sierpinski gasket: we 
iterated the generators 9 times to obtain a 19,683×19,683 lattice.  A typical result of that 
work is shown in Fig. 7. 

 

 
Fig. 7.  Random walk simulation results for a Sierpinski carpet.  Note 
the lack of consistency in dimension dw both in direction and with 
time. (From [24].) 
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From Fig. 7 and numerous similar results it was concluded [24] that none of the 
proposed diffusion equations [23] properly represents diffusion on a fractal.  One 
possible conclusion is that we should regard the proposed equations and their solutions as 
‘hypotheses’ to be tested.   

(This is obviously a topic that is being studied by many scientists with varying 
interests and it is therefore particularly difficult to keep up with the literature.) 

 

8. The hydrogeology of radioactive waste disposal. 
Having laid some of the foundations of the science of hydrogeology, we can deduce a 

few things about a particularly important problem that hydrogeologists work on: 
radioactive waste disposal. 

Starting with the advection dispersion equation, we can see that it would be a good 
thing to minimize the flow rate so that the waste materials, especially the radionuclides, 
stay at or near the repository.  From Darcy’s law, Eq. (2), we see that we therefore would 
like low permeability rock with low head gradients.  Those are indeed amongst the main 
criterion used in site selection for repositories; other factors include the geological 
stability and the ability of the rock to sorb radionuclides.  While we can seek sites with 
negligible flow rates we cannot stop other migration processes and in particular diffusion; 
i.e. we cannot reduce the hydrodynamic dispersivity below the molecular diffusion 
coefficient. 

An obvious target material for disposal is clay with its very low permeability.  Fig. 8 
shows a profile of helium at a potential repository site, this has a shape that is consistent 
with a diffusive equilibrium which indicates negligible advection. 
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Fig. 8.  Observed diffusion profile for helium in a clay formation with a fitted 
diffusion (with production) model. A D value of about 3×10-11 m2/s over a distance 
of about 250 m gives a characteristic time of 10 to 50 millions of years.  (From [25].) 
 

 
Some countries, through the constraints of their geology, have to consider hard rocks 

(especially granite) for disposal of radioactive waste.  While these materials are, like clay, 
of very low permeability they invariably contain cracks which are conduits for water 
flow.  This was initially considered a significant problem until it was realized that 
diffusive exchange of solutes from flowing groundwater into the surrounding micro-
fissures of the rock (i.e. the ‘double-porosity’ mechanism discussed earlier) would have a 
profound influence on the transport [26]. 

A good starting point for anyone new to radioactive-waste science and issues, is 
http://www.radwaste.org/.   
 

9. Conclusions 
Hydrogeologists spend a lot of their time investigating diffusive processes relating to 

water flow, the transport of solutes (normally contaminants) and, less commonly, heat.  
Although the relevant transport equations tend to be simple, the inaccessibility and 
heterogeneity of the subsurface cause significant difficulties.  In the field we carry out 
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experiments (pumping tests and tracer tests) which, at least partially, aim to cut across the 
complications caused by the heterogeneity. 

This short paper cannot do justice to the very great efforts and wide-ranging literature 
relating to transport in the subsurface.  The view presented is very much a personal one 
and another hydrogeologist would have given a different emphasis and different 
examples.  In particular, the following topics deserved more attention: 

• numerical modelling [27, 28], 
• percolation theory [29, 30],  
• the fractal nature of rocks [31], 
• multiphase flow [32], and 
• geostatistical methods [10, 33]. 

My main aim has been to show that the field of hydrogeology offers up a wide variety 
of challenges in relation to practical and theoretical aspects of transport theory.  I 
sincerely hope that some of the younger readers will be encouraged to join in this effort.  
We all need water and we should apply our best science to the exploitation and 
preservation of this valuable resource. 
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